
www.manaraa.com

PREDICTING STUDENT PERFORMANCE IN 

INTRODUCTORY COMPUTER 

PROGRAMMING COURSES 

by 

William E. J. Doane 

A Dissertation 

Submitted to the University at Albany, State University of New York 

in Partial Fulfillment of 

the Requirements for the Degree of 

Doctor of Philosophy 

College of Computing & Information 

Department of Informatics 

May 2008 



www.manaraa.com

UMI Number: 3312236 

INFORMATION TO USERS 

The quality of this reproduction is dependent upon the quality of the copy 

submitted. Broken or indistinct print, colored or poor quality illustrations and 

photographs, print bleed-through, substandard margins, and improper 

alignment can adversely affect reproduction. 

In the unlikely event that the author did not send a complete manuscript 

and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion. 

® 

UMI 
UMI Microform 3312236 

Copyright 2008 by ProQuest LLC. 

All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code. 

ProQuest LLC 
789 E. Eisenhower Parkway 

PO Box 1346 
Ann Arbor, Ml 48106-1346 



www.manaraa.com

Predicting Student Performance in 

Introductory Computer 

Programming Courses 

by 

William E. J. Doane 

COPYRIGHT 2008 



www.manaraa.com

Abstract 

For decades, computer science education researchers have sought to improve 

computing education by refining curricula, instructional methods, and choice of first 

language. Central to the task of improving computer science education is the 

identification of students in need of assistance, ideally as early in their academic career as 

possible. Until recently, no known assessment instrument offered a good predictor of 

student performance in introductory computer programming courses. Such an instrument, 

should it be created, would allow educators to identify students who would be likely to 

have difficulty learning to program. It would also allow instructors to design instruction 

intended to support those students, and to allocate instructional resources more 

appropriately. In 2006, researchers in the United Kingdom identified an assessment 

instrument that shows promise as a predictor of students' final grades in introductory 

computer programming courses. In that same year, researchers in Massachusetts found 

that the commercially available logic puzzle MasterMind® also showed promise as a 

predictor of in-class programming test scores. What connects these techniques? What 

makes them more successful than past assessment instruments designed to test 

programming potential? 

In this study, novice programmers at the undergraduate and high school levels 

completed a modified version of the paper-based assessment instrument designed by 

U.K. researchers. Students also were asked to complete web-based tasks based on 

MasterMind® and Sudoku. 

iii 



www.manaraa.com

The purpose of this study was to collect information about novice computer 

programming students and to use that information effectively to predict their final 

numeric course grade in introductory computer programming courses. In order to extract 

all of the most relevant information from the initial collected data effectively, both 

model-based and algorithmic prediction methods were used in the predictive analyses. 

Regression trees were used, in addition to model-based multiple linear regression 

methods, to derive both generalizable and interpretable predictive results, given the 

available datasets. 

IV 



www.manaraa.com

Table of Contents 

ABSTRACT Ill 

TABLE OF CONTENTS V 

FIGURES IX 

TABLES XI 

CHAPTER 1. INTRODUCTION 1 

State of Computer Science Education 4 

Computer Science, Teaching it, and Understanding it 6 

Programming Computers 8 

Mental Models 9 

Introduction to the Study 11 

Research Questions 12 

Significance 13 

CHAPTER 2. RELATED LITERATURE 15 

Mental Models 16 

Novice Programmers 17 

v 



www.manaraa.com

Dehnadi's Assessment Instrument 20 

Mastermind® 26 

Improving Programming Education 27 

CHAPTER 3. METHODS 28 

The Sample 29 

Data Collection 30 

Data Analyses 32 

Human Subjects Review 34 

CHAPTER 4. DATA ANALYSIS 35 

Characteristics of the Sample 35 

Recursive Partitioning and Regression Trees 40 

Comparison of tree-based predictions of final numeric grades with actual final grades 46 

Comparison of linear models with the Principal Regression Tree 47 

Generalizability 51 

CHAPTER 5. DISCUSSION AND CONCLUSIONS 55 

General discussion 58 

Limitations 58 

vi 



www.manaraa.com

Future Research 60 

REFERENCES 63 

APPENDIX A. EARLY-COURSE VARIABLES OF INTEREST 73 

Criterion Variable 78 

APPENDIX B. OVERVIEW OF COMPUTER PROGRAMMING 79 

APPENDIX C. MODIFIED DEHNADI'S ASSESSMENT INSTRUMENT 86 

APPENDIX D. DEHNADI'S SCORING FORM 96 

APPENDIX E. SCORING GUIDELINES 97 

APPENDIX F. MASTERMIND® GAME 99 

APPENDIX G. SUDOKU GAME , 100 

APPENDIX H. OPEN-ENDED QUESTIONS 102 

APPENDIX I. INFORMED CONSENT FORM 103 

APPENDIX J. CTY INFORMED ASSENT FORM 104 

APPENDIX K. CTY PARENTAL PERMISSION FORM 105 

vii 



www.manaraa.com

APPENDIX L. SAMPLE STATISTICS 106 

APPENDIX M. TYPICAL R SESSION 110 

APPENDIX N. ENHANCED SCATTERPLOT OF SELECTED VARIABLES...111 

APPENDIX O. ENHANCED SCATTERPLOT OF LINEAR MODEL AND 

PRINCIPAL REGRESSION TREE PREDICTED VALUES 112 

viii 



www.manaraa.com

Figures 

Figure 1: Projected percent change in employment, 2004-2014 (Adapted from: United 

States Department of Labor, 2003) 5 

Figure 2: Percentage of freshmen listing computer science as a probable major (Vegso, 

2005) 6 

Figure 3: Mental model identifiers and their associated descriptions (Dehnadi, 2006)....22 

Figure 4: Depiction of levels of consistency in student mental models 24 

Figure 5: Number of students receiving the indicated letter grade 25 

Figure 6: Number of students receiving the indicated numeric grade 25 

Figure 7: Regression Tree, where (finalnumeric ~ cO) 42 

Figure 8: Regression Tree, where (finalnumeric ~ cO + gender + institution + m2.ml0.ne 

+ valid + ql91en + q201en + q211en + q221en + durationmins) 43 

Figure 9: Principal Regression Tree, where (finalnumeric ~ cc + m2.ml0.ne + q211en) .45 

Figure 10: Scatter plot of predicted final grades (based on principal regression tree) 

versus actual final numeric grades 47 

Figure 11: Enhanced scatter plot matrix to highlight effects of Dehnadi's consistency 

variable 52 

Figure 12: Enhanced scatter plot matrix for variables in the Principal Tree 54 

Figure 13: An overview of computer programming 83 

Figure 14: Mastermind Game Board (Source: Wikipedia.org, 2007a) 99 

Figure 15. Sample SuDoku Game Board (Source: Wikipedia.org, 2007b) 100 

Figure 16: Enhanced Scatterplot of Selected Variables 111 

ix 

http://Wikipedia.org
http://Wikipedia.org


www.manaraa.com

Figure 17: Enhanced Scatterplot of Linear Model and Principal Regression Tree 

Predicted Values 112 

x 



www.manaraa.com

Tables 

Table 1. Sample algebraic equivalences; equivalent in algebra, but not in computer 

programming 20 

Table 2. Correlation matrix for positively correlated mental models 44 

Table 3. Coefficients and t-statistics for main effects linear model; call: finalnumeric ~ cO 

+ gender + institution + m2.ml0.ne + valid + ql91en + q201en + q211en + q221en + 

durationmins 48 

Table 4. Coefficients and t-statistics for interaction effects linear model; call: 

finalnumeric ~ cc * m2.ml0.ne * q211en 49 

Table 5: Fictional assembly-to-machine language translation 85 

Table 6: Fictional high-level-to-assembly-to-machine language translation 85 

Table 7: 106 

Table 8: Prior Programming Experience by Programming Language and Gender 106 

Table 9: Descriptive Statistics 107 

Table 10: Responses to Paper Assessment Instrument Question 1 107 

Table 11: Responses to Paper Assessment Instrument Question 2 107 

Table 12: Responses to Paper Assessment Instrument Question 3 107 

Table 13: Correctness of Responses to Paper Assessment Instrument Question 4 by 

Gender 107 

Table 14 Responses to Questions 5 by Response and Gender 108 

Table 15: Responses to Questions 6 by Response and Gender 108 

Table 16: Item Responses for PAI Questions 7-18 108 

xi 



www.manaraa.com

Table 17: CO consistency of Mental Models Used by Mental Model and Gender 109 

xn 



www.manaraa.com

Chapter 1. Introduction 

Some ten years ago, Allen Tucker proclaimed that there was a crisis in computer 

science education (Tucker, 1996a). He identified outdated curricula, inadequate teaching 

methods and faculty development, and a fragmented discipline as core challenges to the 

future of computer science education. Others have more recently identified lack of 

problem-solving skills, high dropout rates, and decreased student enrollment as core 

concerns (Ma, Ferguson, Roper, & Wood, 2007; McBride, 2007). For decades, computer 

science education researchers have sought to improve computing education by refining 

curricula, instructional methods, and choice of first language (Tucker et al., 2003). Others 

have sought indicators of students' computer programming potential with little success 

(Dehnadi, 2006; Lorenzen & Chang, 2006). In particular, questions regarding novice 

programmers' prior experiences, successes, and failures have been a focus of much 

research (Bayman & Mayer, 1983; Du Boulay, 1989; Lister et al., 2004; Ma et al., 2007; 

Mayer, 1981; Soloway & Spohrer, 1989). 

Until recently, no known assessment instrument offered a good predictor of 

student performance in introductory computer programming courses (Lorenzen & Chang, 

2006). Such an instrument, should it be created, would allow educators to identify 

students who would be likely to have difficulty learning to program. It would also allow 

instructors to design instruction intended to support those students, and to allocate 

instructional resources more appropriately. In 2006, researchers in the United Kingdom 

designed an instrument (referred to in this study as Dehnadi's assessment instrument or 

simply Dehnadi's instrument) that shows promise as a predictor of student performance 

1 



www.manaraa.com

in introductory computer programming courses (Dehnadi, 2006; Dehnadi & Bornat, 

2006). Also in 2006, researchers in Massachusetts found that the commercially available 

logic puzzle Mastermind® also showed promise as an indicator of students' in-class 

programming test scores (Lorenzen & Chang, 2006). What connects these techniques? 

What makes them more successful than previous tests designed to test programming 

potential? 

This study posits that the logical, step-wise reasoning required by these 

assessment instruments reflects habits of mind that undergird the reasoning of students 

who perform well in introductory programming courses. Learners' mental models 

regarding the lawfulness and consistency of the task of interest influence their ability to 

learn to program a computer using languages in which assignment follows the rule: the 

value of the left-hand-side becomes the value of the right-hand-side and the right-hand-

side keeps its value. Java and JavaScript are examples of such languages. (Java and Java-

style languages are the de facto standard for modern introductory programming courses. 

Java is the chosen language for the high school Advanced Placement course offered in 

the United States.) 

The goal of this research was to identify assessment instruments that could be 

used as predictors of student performance in introductory programming courses and to 

use the information provided by those instruments optimally. A table of variables of 

interest is included in Appendix A. Early-course Variables of Interest including their 

descriptions and source. 

Two of the assessment instruments included in this study were drawn from recent 

research on computer programming aptitude: Dehnadi's assessment instrument and 

2 



www.manaraa.com

Mastermind®. Dehnadi's instrument was designed to reveal learners' mental models 

regarding assignment of values to variables and to evaluate the consistency and viability 

of those mental models (Dehnadi, 2006). Consistency of mental model was believed to be 

more important than viability of the model. That is, if the learner believes there is one and 

only one rule that applies, and if they apply that rule consistently, then the initial 

correctness of the rule appears to be unrelated to the learner's performance in 

introductory programming (Dehnadi, 2006). Mastermind® purportedly revealed 

programming aptitude by requiring players to apply "...analytic skills and logical 

deductive powers..." in order to guess the correct solution to a puzzle (Lorenzen & 

Chang, 2006). Both Dehnadi's assessment instrument and Mastermind® relied on the 

learner's ability to apply a lawful process in order to find a solution. Indeed, if the learner 

believes the process to be arbitrary, then a correct solution is the result of pure chance. 

Based on this, an additional instrument was included in this study: Sudoku. 

Sudoku is a number puzzle game where the player uses a set of initial constraints 

(filled-in numbers) and deductive skills to discover the placement of all other numbers in 

the puzzle (for a complete description, see Appendix G. Sudoku Game). Sudoku, like 

Dehnadi's assessment instrument and Mastermind®, requires the consistent application 

of lawful rules in order to arrive at a solution. 

If, indeed, such tasks can be used to predict final performance, then computer 

science educators can use this information to redesign introductory courses and better 

serve students and the discipline. This study sought to make optimal use of information 

collected early in the course in order to predict students' final course grade. To the degree 

3 



www.manaraa.com

this is possible, interventions may be targeted at those students identified as likely to have 

low final grades. 

State of Computer Science Education 

Computing has become a vital facet of almost every area of modern human 

endeavor. Computing technologies have transformed how we engage with the world 

around us (Kling, 1996). Computing-related jobs are growing at a staggering rate. The 

United States Department of Labor projects that between 2004 and 2014,".. .computer 

systems design and related services will grow by 39.5 percent and add almost one-fourth 

of all new jobs in professional, scientific, and technical services" (United States 

Department of Labor, 2003). Others note that, in the future, the larger information 

technology field will represent nearly one million new jobs (Blake, 2006). Indeed, 

"computer occupations account for 5 out of the 20 fastest growing occupations in the 

economy", as shown in Figure 1, while healthcare accounts for 12 of the remaining 

occupations (United States Department of Labor, 2003). 

4 



www.manaraa.com

Network systems and data 
communications artalpts 

Computer software engineers, 
applications 

Computer software engineers, 
systems software 

Network and computer systems 
administrators 

Database administrators 

0 10 20 30 40 50 60 

Percent change 

Figure 1: Projected percent change in employment, 2004-2014 (Adapted from: 

United States Department of Labor, 2003) 

Despite the projected increase in computing jobs, enrollment in undergraduate 

computer science programs decreased by nearly 60 percent between 2000 and 2004 

(Vegso, 2005), as shown in Figure 2, and the downward trend continued in 2005 (Blake, 

2006). Additionally, the rate of graduating women and minority students from computer 

science programs slowed during the same period (Levy, 2007). Clearly, there is a 

widening gap between the demand for highly skilled computer professionals and our 

ability to entice students into the field and to engage them once they are there. 

5 



www.manaraa.com

OT"-I—r—t—i—i 11 t i—r—T—i—i—i—t—i—i—i—i—r r "i—r—i—i—i—i—i—i—i—i—i—i—i 

fall of 

Figure 2: Percentage of freshmen listing computer science as a probable major 

(Vegso,2005) 

Computer Science, Teaching it, and Understanding it 

The first computer science (CS) departments began to emerge in the 1960s 

(Tucker, 1996b), only 24 years after Alan Turing first proposed what later became known 

as the Turing Machine, an abstract model of a computing machine capable of calculating 

any computable number (Turing, 1936). As digital computers were designed and built, 

the introduction of formal, professional training in computer science began to raise 

questions regarding the content, order, and delivery of the new CS curriculum (Tucker, 

1996b). These issues remain the focus of computer science education (CSEd) today. 

6 



www.manaraa.com

Broadly defined, CSEd is the teaching and learning of CS-related topics. CSEd embodies 

teaching methods, learning theories, and curriculum development with regard to CS 

(Fincher & Petre, 2004). 

The desire to understand CSEd and the successes and failure of computing 

education gives rise to the discipline of computer science education research (CSEdR). 

Researchers of CSEd come from a broad range of disciplines including ".. .at least... 

education, psychology, computer science, technology and engineering" and consider 

questions relating to: 

• "student understanding, 

• animations/visualization/simulation systems, 

• teaching methods, 

• assessment, 

• educational technology, 

• the transfer of professional practice into the classroom, 

• the incorporation of new developments] and new technologies into the 

classroom, 

• transferring to remote teaching ('e-learning'), 

• recruitment and retention of students, and... 

• the construction of the discipline itself (Fincher & Petre, 2004). 

The abilities to conceptualize and predict the functions of computer systems and 

to program computers to attain desired results are critical to success in computer science 

(Stephenson, Gal-Ezer, Haberman, & Verno, 2005). Unless students can conceptualize 

the inner workings of the computer well, their expectations of program execution will 

7 



www.manaraa.com

often be incorrect (Du Boulay, O'Shea, & Monk, 1989). Accordingly, one active area of 

CSEdR has been the learning of programming languages, particularly by novice 

programmers: those students who have not previously learned another programming 

language (see for example studies by Ben-Bassat Levy, Ben-Ari, & Uronen, 2003; 

Brusilovsky, Kouchnirenko, Miller, & Tomek, 1994; Clancy, 2004; Dehnadi, 2006; 

Duke, Salzman, Burmeister, Poon, & Murray, 2000; Fay & Mayer, 1988; Fincher, 1999; 

Guzdial, 2004; Karsten & Kaparthi, 1998; Mayer, 1988a, 1988b; Perkins, Schwartz, & 

Simmons, 1988; Robins, Rountree, & Rountree, 2003; Weinberg, 1988; Yuen, 2006). 

Programming Computers 

"Computer programmers write, test, and maintain the detailed instructions, called 

programs, that computers must follow to perform their functions. Programmers also 

conceive, design, and test logical structures for solving problems by computer" and 

"computer programs tell the computer what to do—which information to identify and 

access, how to process it, and what equipment to use" (United States Department of 

Labor, 2007). As such, the task of programming a computer is central to the successful 

operation of a computer system. A poorly designed or poorly coded computer program 

can result in unstable system performance and computer failures. Programming is one 

critical aspect of computing. "Clearly programming is part of the standard practices of the 

discipline and every computing major should achieve competence in it" (Denning et al., 

1989). 

Much modern computer programming is done using so-called high level 

languages. High level languages provide layers of abstraction between the computer's 

8 



www.manaraa.com

hardware and the programmer. The programmer can instruct the computer to add two 

numbers, without regard to the underlying mechanisms that the computer employs to 

perform the addition. However, as programming becomes increasingly removed from the 

underlying hardware, novice programmers are called upon to learn not only the 

programming language for providing instructions to the computer, but also to intuit one 

or more models of the underlying physical and computational processes involved in the 

computer's operation. These "deep conceptual hierarchies... [have] no precedent in our 

history" (Dijkstra, 1988) and pose significant challenges to learners. That is, the 

instructions given to the computer using a high level language are so far removed from 

the underlying hardware implementation that programmers must understand and model 

both theoretical and physical systems to which they have no direct access. This 

introduces a complexity to the task unprecedented in human history. 

Mental Models 

In order to make sense of complexity, people construct mental models that 

represent critical aspects of a phenomenon of interest (Johnson-Laird, 1983). When 

learners begin learning a programming language, they may possess mental models of 

how computers operate and how computer programs function based on their prior 

experience (Day & Kovacs, 1996). These models may be viable (i.e., reasonably model 

critical aspects of the phenomenon) or non-viable (i.e., lack or misrepresent critical 

aspects) (Johnson-Laird, 1983). These models are used to interpret the observable 

operation of the computer and to intuit the unobservable aspects of a computer's 

operations. 

9 



www.manaraa.com

Mental models are a critical aid to learning and lack of viable mental models can 

undermine the learning process (Day & Kovacs, 1996). However, fostering viable mental 

models requires that "|o]ne must take care... to make clear the correspondence between 

the model presented and the modeled process. For example, the dynamic process of 

program execution is difficult to convey with a static description" (Clancy, 2004, p. 95). 

In order to understand learners' current mental models, we must gain insight into the 

organization and content of those models. 

Researchers in the United Kingdom believe they have developed an assessment 

instrument (referred to in this study as Dehnadi's assessment instrument) that reveals 

learners' mental models concerning the assignment of values to variables (Dehnadi, 

2006; Dehnadi & Bornat, 2006). If the instrument can be validated, it promises to offer 

insight into who is likely to succeed in introductory programming courses, as indicated 

by measures of student performance. Assuming that excellent performance in 

programming courses is an indicator of programming potential, researchers have long 

sought such a predictor of programming potential (see papers by Bayman & Mayer, 

1983; Bonar & Soloway, 1989; Brusilovsky et al., 1994; Clancy, 2004; Cunniff, Taylor, 

& Black, 1989; Du Boulay, 1989; Du Boulay et al., 1989; Kuittinen & Sajaniemi, 2004; 

Mayer, 1981; Mayer, Dyck, & Vilberg, 1986; Pea, 1986; Perkins, Hancock, Hobbs, 

Martin, & Simmons, 1989; Robins et al., 2003; Sajaniemi & Kuittinen, 2005). In 

particular, the role of variables has been of concern, since so many novice programmers 

seem to have difficulty understanding the nuance of variables (Kuittinen & Sajaniemi, 

2004; Sajaniemi & Kuittinen, 2005). Finding correlates to student performance in 

introductory computer programming courses has been so elusive, some researchers have 

10 



www.manaraa.com

even looked to logic games as a possible predictor—with significant success (Lorenzen & 

Chang, 2006). These studies are discussed in further detail, below. 

Introduction to the Study 

In this study, novice programmers at the undergraduate and high school levels 

completed a modified version of Dehnadi's assessment instrument, a paper-based 

computer programming instrument designed by U.K. researchers. Additionally, students 

were asked to complete web-based tasks based on Mastermind® and Sudoku. The 

intention was to use the information from these instruments in order to predict students' 

final course grade. The response rate for the online games prevented data from those 

instruments from being used in the data analysis conducted. 

Participants completed a modified version of Dehnadi's instrument during the 

first week of introductory computer programming classes. This instrument provided 

demographic information (age, gender, and prior experience) on participants, responses 

to individual items, and data concerning the consistency of learners' mental models 

(based on Dehnadi's scoring methods). Following the administration of Dehnadi's 

instrument and prior to instruction regarding the assignment of value to variables, 

participants were asked to complete the online games. An automated system collected 

data regarding participant actions during game play including errors made and time-

to-complete tasks. At the end of term, after final grades have been processed, the final 

grades of participants were collected and served as the criterion variable for this study. 

Participants were solicited from university and community college computer 

science students. In addition, some participants will be students enrolled in Johns 

11 



www.manaraa.com

Hopkins' summer program for gifted youth. These institutions have been selected largely 

for reasons of practicality—in particular their proximity to the researcher's home 

institution in order to facilitate administration and oversight of assessment administration. 

Research Questions 

This study, in part, emulates a study conducted recently in the United Kingdom 

concerning the mental models of novice programming students (Dehnadi, 2006). The 

instrument was modified to include several questions relating to logic and discrete 

mathematics as well as several qualitative questions regarding participants' reactions to 

the instrument. Additionally, two logic-based games were introduced in an effort to 

identify which, if any, predict final course grade in introductory computer programming 

courses. The questions addressed by this study were: 

• What variables or combination of variables collected at the start of term serve best 

as predictors of students' final grades at the end of term? 

• Following Dehnadi, is the measure of consistency of students' mental models 

regarding assignment of values to variables at the outset of the course positively 

correlated with students' final grades at the end of the course? If so, how strong is 

that relationship? 

• Are there additional predictor variables that tend to moderate or condition the 

relationship(s) between the main 'consistency' measures and the outcome 

measure? If so, what is the nature and extent of the moderator effects? 

12 



www.manaraa.com

• What are the similarities and differences among the predictability results across 

the three main groups: university students, community college students, and (high 

performing) high school students? 

Significance 

This study contributes to our understanding of the relationship(s) between student 

success in introductory computer programming courses (as indicated by final course 

grade) and students' initial mental models of the processes underlying assignment of 

values to variables and ability to reason logically (as indicated by questions added to 

Dehnadi's instrument and the online tasks). 

The authors of the U.K. studies suggested that the ability to distinguish between 

those likely to succeed in a programming course and those likely to fail offers a powerful 

administrative tool that could be used to determine which students are allowed to 

continue their study of computer programming, and which are lost causes (Dehnadi & 

Bornat, 2006). While that idea derives mostly from considerations of resource allocation 

and admission to a program of study, it precluded the possibility that identification of 

students who are likely to have a notable difficulty in such courses might be helped at the 

outset to attain the mental model skills that may serve to make them successful in 

programming courses. Several other possibilities might be considered: students could use 

the instrument as a self-diagnostic tool to gauge their skill for computer programming; 

instructors could use the information provided by such an instrument to develop remedial 

lessons that would aid those identified as likely to fail (although the effectiveness of such 

remediation remains an open research question). 

13 



www.manaraa.com

Additional question arise regardless of the findings pertaining to the role of 

measures of consistency of mental models of assignment of values to variables for 

prediction of final grade in Java-style programming courses. What mental model 

measures might be effective as predictors of success in courses based on other 

programming languages, such as LISP or Prolog? How might students' initial mental 

models inform common student misconceptions and programming errors? What 

additional variables might moderate or condition the predictability of outcomes in such 

different contexts? 

In short, this study broadens a line of research that could inform student selection 

of majors as well as instructional planning, curriculum design, and assessment in 

computer programming courses. This study has the potential to benefit students, 

educators, and the field of computer science education by identifying diagnostic tools and 

knowledge with potentially wide-ranging application and effect. 

14 



www.manaraa.com

Chapter 2. Related Literature 

This study draws upon work in cognitive analysis, mental representations, and the 

psychology of computer programming. Broadly, it assumes that expert and novice 

computer programmers possess mental models of computational processes and that these 

models differ between the two groups (possibly because of training or experience). 

Further, it assumes, in accord with accepted mental model theory, that such models are 

mutable, albeit unknowable, and that at least some novices may, through experience and 

training, modify their mental models to resemble more closely those of expert 

programmers (Johnson-Laird, 1989). 

The proposed study contributes to work in computer science education (CSEd) 

and computer science education research (CSEdR). CSEd seeks to produce competent 

computer science (CS) professionals, including computer programmers. CSEd is 

concerned with the selection of curriculum, delivery of instruction, and assessment of 

learning in CS. CSEdR, then, is the systematic study of the effects of choices made in 

CSEd and the exploration of alternative curricula, instructional methods, and assessment 

techniques (Fincher & Petre, 2004). CSEdR is a young discipline, necessarily lagging 

behind CS and CSEd, and "...is too new, and there are too few people doing work in this 

field. We are still in the stage of the field of identifying potential answers to key 

questions - indeed, even figuring out what the key questions are! " (Guzdial, 2004, p. 

128). "Historically, computing technology has been far ahead of computer science 

pedagogy. Each new programming paradigm - procedural, functional, declarative, and 

object-oriented programming - has its own computational model, usage idioms, and so 

15 



www.manaraa.com

on" (Clancy, 2004, p. 97) and both educators and learners are challenged by these ever 

shifting sands. 

Mental Models 

Mental models are internal representations of a believed state of the world and 

relationships among elements in the world (Johnson-Laird, 1989). Mental models are, by 

their nature, unknowable and inexpressible (Johnson-Laird, 1983). "Our models 

profoundly influence how and why we act, teach, and learn in the ways we do " 

(Henderson & Tallman, 2005, p. 18). Mental models are based on an information 

processing model of mind (Johnson-Laird, 1983). Accordingly, they are subject to 

Shannon-style constraints: imperfection, correction, and transmission (Shannon, 2001). 

When someone attempts to express a given mental model, the representation of the model 

is a necessarily imperfect representation. Mental models imperfectly represent a fact or 

relationship about the world. They can be expressed, introducing error into the 

representation. Those expressions can then be interpreted by another individual and 

converted into another mental model, necessarily an imperfect model of the 

representation. In short, the conveyance of mental models from one individual to another 

is an error prone, yet absolutely necessary element of learning (Johnson-Laird, 1988). 

People construct mental models that represent critical aspects of a phenomenon of 

interest in order to make sense of complexity (Johnson-Laird, 1983). These models 

incorporate what the individual perceives as salient aspects of the phenomenon and omit 

non-salient aspects (P. A. Smith & Webb, 1995). When learning a programming 

language, learners may hold mental models of how computers operate and how computer 

16 



www.manaraa.com

programs function based on their prior experience (Day & Kovacs, 1996). These models 

may be viable (i.e., reasonably model critical aspects of the phenomenon) or non-viable 

(i.e., lack or misrepresent critical aspects) (Johnson-Laird, 1983; Ma et al., 2007). These 

models are used to interpret the observable operation of the computer and to intuit the 

unobservable aspects of a computer's operations. 

Since programmers cannot directly observe the systems they affect (typically, one 

does not directly observe the off and on switches present in computers), possessing viable 

mental models of the underlying processes is critical to success in programming. 

Nevertheless, one-third of the students completing programming courses do not hold 

viable mental models of assignment of values to variables (Ma et al., 2007). 

While there has been significant research on eliciting mental models in general 

(Chittleborough, Treagust, Mamiala, & Mocerino, 2005; Ehrlich, 1996; Gagne & Glaser, 

1987; Garnham, 1987; Henderson & Tallman, 2005; Johnson-Laird, 2005), little work 

has been done in CSEdR to determine what mental models novice programmers hold (Ma 

etal.,2007). 

Novice Programmers 

A recent study estimated that the average failure rate in introductory 

programming courses world-wide is 33% (Bennedsen & Caspersen, 2007). That study 

found no correlation between the way in which the course was taught, the focus of the 

course, the programming language used, and whether students passed or failed the 

course. 

17 



www.manaraa.com

Early proponents of teaching computer programming broadly and at a young age 

touted the benefits that such training would have for learners: "In teaching the computer 

how to think, children embark on an exploration about how they themselves think" 

(Papert, 1980, p. 19). Research has shown that "[n]o matter what the age of the students, 

programming is hard to learn. Whether students attempt to learn to program at a young 

age or at the age of young adults, the tasks and difficulties remain similar" (Guzdial, 

2004, p. 128). Reflecting this, attempts to quantify the benefits to learners have resulted 

in "...mounting data point|ingJ to problems in students' learning..." (Mayer, 1988a, p. 2) 

and "...studies of the relationship between higher-order thinking skills and programming 

have never shown any significant correlation" (Guzdial, 2004, p. 131). 

Understanding what difficulties novice programmers have with learning to 

program and what misconceptions they have regarding program execution are valuable to 

improving computer programming instruction and learning (Mayer, 1981; Mayer et al., 

1986; Soloway & Spohrer, 1989). Misconceptions may indicate non-viable mental 

models held by novice programmers (P. A. Smith & Webb, 1995). "...if the programmer 

has a faulty mental model of how the computer works then she will have great difficulties 

in creating correct programs to solve her problems" (P. A. Smith & Webb, 1995, p. 2). 

Thus, "...one of the first learning tasks a novice programmer must undertake is to obtain 

an adequate mental model" (P. A. Smith & Webb, 1995, p. 2). 

Research into the experiences of novice programmers has identified sources of 

errors made by novice programmers (Clancy, 2004). These include: 

• linguistic transfer: English words take on special meaning in computer 

programming, 

18 



www.manaraa.com

• algebraic notation: relying on their understanding of algebra to interpret computer 

code, and 

• Over- or under-generalization: incorporating too much or too little detail from 

examples. 

Nevertheless, "...cataloging and analyzing misconceptions will not be sufficient to 

improve students' misunderstanding" (Ben-Ari, 1998), so we must seek out the 

underlying cause of the misconceptions. "Students' fragile knowledge of programming 

[is attributable] in considerable part to a lack of a mental model of the computer that 

helps learners to encode and consolidate their knowledge of programming" (Perkins et 

al., 1988, p. 162). Thus, mental models provide one avenue of research to explore and 

explain the root causes of novice misconceptions. This is reflected in the literature on 

science education, where "there is a considerable literature on how misconceptions and 

inappropriate attitudes complicate learning" (Clancy, 2004, p. 85). 

The confusion caused by the similarity between programming statements and 

algebraic notation (Clancy, 2004) is worth additional comment. In standard algebra, with 

which most novice programmers are familiar, the pairs of statements given in Table 1 are 

equivalent. Yet, in Java-style languages, each statement is quite different. Indeed,' 10 = 

x' is a malformed statement and would prevent a program from compiling successfully, 

while 'a = b' and 'b = a' have very different effects, given the LEFT-HAND-SIDE 

BECOMES THE VALUE OF RIGHT-HAND-SIDE method of assignment of values to 

variables. 

19 



www.manaraa.com

Table 1. Sample algebraic equivalences; equivalent in algebra, but not in computer 

programming 

x=10 

10 = x 

a = b 

b = a 

If learners hold an algebraic model of assignment, then programming errors are 

inevitable. Understanding learners' mental models is a necessary first step to improving 

teaching and learning of computer programming, since "[learners'] misconceptions 

spring from a learner's efforts to link knowledge. Remedies must focus on that linkage to 

foster more coherent understanding" (Clancy, 2004). "What is at issue is ... whether 

there is any pedagogical advantage in providing people with models of tasks they are 

trying to learn" (Johnson-Laird, 1989, p. 485). 

Dehnadi's Assessment Instrument 

The paper-based instrument adopted for this study attempt to make manifest 

students' mental models and to predict, based on the consistency of those models, who is 

likely to do well versus who is likely to do poorly in an introductory computer 

programming course. It was first presented in the United Kingdom in 2006 and 

administered to 60 computer programming students at the School of Computing, 

Middlesex University. (Dehnadi, 2006; Dehnadi & Bornat, 2006)1. Researchers sought to 

identify which incoming computer programming students were likely to have difficulty 

1 Dehnadi has graciously given permission for his instrument to be used in this study. 

20 



www.manaraa.com

with the introductory programming course and which were likely to pass relatively easily. 

To answer this question, they devised a short test that focused on eliciting students' 

mental model(s) regarding the assignment of values to variables (included as Appendix 

C. Modified Dehnadi's Assessment). Each possible response was analyzed and classified 

as representing one of 11 mental models of assignment, as summarized in Figure 3. The 

order of the models represented in the response set on the instrument was mixed, so that a 

student blindly accepting all of the first responses, for example, would not appear to have 

a consistent mental model of assignment. 

21 



www.manaraa.com

.Motel, 

MX 

M2 

1C3 

M4 

MS 

M6 

117 

MS 

M9 

M10 

Mil 

Description 

the value of b is gives to m asd h ebmgts its value to zero. 
a < - to b < - 0 

Tie vafce of to is givea to a aad b keep i s osgaal value. 
« <- b / / b a«ba»§©4 

Ttte value of a is gveo to b and a cteages Its vatae to asro, 
b <~ a a < - § 

The v&lae of a is given to band a keepi its original value. 
b <- a / / a m&chaiiged 

Tie ram of a «d b is given to m, md h keeps is origins! 
value, a < - (a * b) / / b tiacbasffMl 

The sum of a and b is gives to a, aad b changes its value to 
zero. a < - (a + b) b <- 0 

The sum of a a i b is given to b, sad a keeps Ms onpnal 
value, b <- (a *• b) / / m niu&aagad 

The sum of a and b is given to a, and b changes its value to 
zero, » <- (a + b) a < - 0 

a aodb keep their original values, 
a vMChanqerft / / b uachaaged 

Assignment is a simple equation, and then ail equat values of a 
md b are acceptable. 

m and to swap tbetr values simaitajieotisly. 
a < - b -> a get* b ' s fate© 

b < - a -> to gets a ' s val«e 

Figure 3: Mental model identifiers and their associated descriptions (Dehnadi, 2006) 

In order to determine what mental models students held regarding the assignment 

of values to variables and to assess the consistency of those models, the U.K. study 

assessed consistency at four levels (see Appendix D. Dehnadi's Scoring Form), where 

each "higher" level represents a more general model (simple assignment versus 

directional assignment, e.g.): 

22 



www.manaraa.com

• CO: This is the most detailed mental model. At this level, the student's mental 

model reflected assignment or addition-assignment (where the Left Hand Side 

[LHSJ takes on the value of itself PLUS the Right Hand Side [RHS ]) of values to 

variables, either to the left or to the right, and either always losing the RHS value 

or always keeping it. 

• CI: At this level, the student's mental model reflected assignment of values to 

variables, either to the left or to the right, but sometimes the RHS loses its value 

and sometimes keeps it. 

• C2: At this level, the student's mental model reflected only assignment or 

addition-assignment. 

• C3: At this level, the student's mental model reflected only that there was an 

operation taking place, but as not specific as to how that operation took place. 

The hierarchy of the models is depicted in Figure 4. For reference, the "correct" 

mental model of assignment of values to variables in Java-style languages is indicated by 

the inverted node, namely assign-to-left, with the right-hand-side keeping its value. Java 

and Java-style languages are the de facto standard for modern introductory programming 

courses and Java is the chosen language for the high school Advanced Placement course 

currently offered in the United States. 

23 



www.manaraa.com

Figure 4: Depiction of levels of consistency in student mental models 

Students in the U.K. study were said to have a consistent mental model of 

assignment at a given level if and only if at least eight of the responses to the instrument 

reflected the same mental model. Otherwise, students were said to have an inconsistent 

mental model of assignment at that level. Trivially, a student consistent at level CO is also 

consistent at levels CI, C2, and C3. 

They discovered that those students who espoused a consistent mental model 

(regardless of whether or not the model was the correct model with respect to Java-style 

assignment [M2J) were significantly more likely to pass the course than those who 

espoused inconsistent mental models (Dehnadi, 2006). The distribution of final scores 

(letter-based and numeric) is presented in Figure 5 and Figure 6, respectively. Each figure 

clearly shows the separation between those with a consistent mental model and those 

without, while the variance is more pronounced in Figure 6. 

24 



www.manaraa.com

*& Consistent 
• mcons:stenyo.an(k 

D B A 

Figure 5: Number of students receiving the indicated letter grade 

»•» »-m «-» «M* ss-ssi '»»-'« BO-M 

Figure 6: Number of students receiving the indicated numeric grade 

Students were said to have a consistent mental model of assignment if and only if 

at least eight of the responses reflected the same mental model. Otherwise, students were 

said to have an inconsistent mental model of assignment. Some students did not respond 

and were included in the "inconsistent" group (Dehnadi, 2006). 

While much work remains to validate the findings of the U.K. group, initial 

response to the results of the test has been positive (Ma et al., 2007). Other research 

25 



www.manaraa.com

teams are currently working to replicate the study in Australia, Canada, Ireland, 

Germany, New Zealand, and Mozambique (Dehnadi, 2007). 

Mastermind® 

The commercially available logic game, Mastermind®, involves two players: the 

code-maker (CM) and the code-breaker (CB). The CM selects four marbles from a set of 

eight possible colors and orders them. The CB then has twelve guesses to find the correct 

colors and ordering. After each guess by the CB, the CM indicates how many of the 

marbles guessed are both the right color and the right position by placing a dark pin to the 

side and how many are the correct colors, but not the correct position, by placing a light 

colored pin. For example, if the solution was red-red-blue-black, and the guess was red-

white-black-blue, them the CM would place one dark pin (for the correct "red" marble) 

and two light pins (for the misordered black-blue marbles). Given the information 

provided by previous guesses and the responses from the CM, the CB attempts to deduce 

the solution. This process engages the CB in an iterative process of seeking for the 

solution, which he or she can do if and only if he or she believes that the process is 

lawful. 

Lorenzen and Chang used this game as a basis for a computer programming 

aptitude test (2006). They believe that the analytical and logical skills required by the 

game parallel those used by programmers. If this is the case, then other games that 

require similar analytical, logical reasoning may also serve as predictors of student 

performance. 

26 



www.manaraa.com

Improving Programming Education 

Researchers have considered a wide range of predictors for success in 

introductory programming courses including choice of first programming language 

(Bayman & Mayer, 1983; Cunniff et al., 1989; Duke et al., 2000; Xinogalos, Satratzemi, 

& Dagdilelis, 2006), choice of development environment (Guzdial, 2004; Xinogalos et 

al., 2006), gender (Dean, 2007; Linn, 1995; Margolis & Fisher, 2003; McKenna, 2000), 

age, prior programming experience, math experience, attitude, and learning style (Bonar 

& Soloway, 1989; Brusilovsky et al., 1994; Clancy, 2004; Du Boulay, 1989; Gray, 

Goldberg, & Byrnes, 1993; Kahney, 1989; Kay,; Ma et al., 2007; Mayer, 1981; Mayer et 

al., 1986; Milne & Rowe, 2002; Pea, 1986; Perkins et al., 1989; Perkins et al., 1988; D. 

C. Smith, Cypher, & Tesler, 2000; P. A. Smith & Webb, 1995; Wu, Dale, & Bethel, 

1998). Recently, one study considered the use of the children's board game Mastermind® 

as a possible predictor of in-class programming test scores—with greater success than 

many of the above studies (Lorenzen & Chang, 2006). 

While much research has been conducted to locate accurate predictors of student 

performance in introductory computer programming courses, there has been little success 

(Dehnadi, 2006; Lorenzen & Chang, 2006). An accurate predictor of student performance 

in introductory programming courses would allow educators to develop targeted 

instruction for those students likely to have difficulty in the course and would provide a 

rational basis for instructional design. 

27 



www.manaraa.com

Chapter 3. Methods 

The purpose of this study was to collect information about novice computer 

programming students and to use that information effectively to predict their final 

numeric course grade in introductory computer programming courses. Ultimately, this 

work may be used to break those predictions, by identifying students likely to have 

difficulty in introductory programming courses and allowing computer science educators 

to craft instructional interventions to aid those students. 

This study considered three groups of students studying either JavaScript or Java, 

similar but distinct programming languages: 

1. Johns Hopkins' Center for Talented Youth gifted and talented high school 

students learning JavaScript; 

2. university undergraduates learning Java; and 

3. community college students learning Java. 

Each group of students had a different instructor, classroom setting, and at least 

somewhat different learning goals, as well as different means for assessing student 

performance. A recent study found no correlation between these factors and the pass/fail 

rate of introductory programming students (Bennedsen & Caspersen, 2007). 

In order to extract effectively all of the most relevant information from the initial 

collected data, both model-based and algorithmic prediction methods were used in the 

predictive analyses. The predictive contributions of individual, item-level responses were 

considered, as will as the contributions of combinations of responses and computed 

values based on those responses. Analytical methods such as regression trees were used, 

28 



www.manaraa.com

in addition to model-based multiple regression methods, to derive both generalizable and 

interpretable predictive results, given the available datasets. 

Participants completed a paper-based assessment instrument. They were also 

asked to complete two web-based activities, but the response rate among university and 

community college students were too low for this data to be usable. These assessments 

were completed early in the respective courses and responses were compared with later 

measures of performance in the course (i.e., students' final grades). 

The Sample 

The target population for this study was introductory computer programming 

students enrolled in courses taught using a Java-style programming language. Students of 

many ages might fit that description: high school students might be engaged in computer 

programming courses in their schools or in external programs; university, four-year 

college, or community college students might be enrolled in courses as part of their 

program of study; and adults might be enrolled in introductory programming courses as 

part of a personal or professional development program. Accordingly, this study included 

participants from multiple institutions and participants included members of three 

representative groups. Computer science programs at educational institutions in and near 

Albany, New York were contacted and solicited for participation in this study. 

29 



www.manaraa.com

Participants in a summer introduction to computer science course for precocious 

(high performing) high school students also were recruited for inclusion in this study2. 

The summer course consisted of approximately 30 students aged 12-16 years who 

achieved SAT or ACT scores placing them on at or above the mean of college bound 

high school seniors. The students were enrolled in a three-week summer program for 

gifted youth offered by Johns Hopkins University. The researcher taught this course. 

Because of the researcher's role as instructor, the initial assessments were not scored or 

reviewed until after the course was completed, in order to avoid potential scoring biases. 

Two other groups of students were also recruited: those enrolled in introductory 

computer programming courses using Java-style languages at a university and a 

community college during the fall 2007 term. These institutions were chosen for their 

proximity to the researcher's home institution in order to facilitate oversight and 

administration of the assessment instruments. Students in these courses were typically 18 

years of age or older, first year students, although demographics varied depending on the 

institution's target population. 

Data Collection 

During the first week of the course, students completed a modified version of 

Dehnadi's assessment instrument before instruction concerning assignment of values to 

variables began (see Research Questions, above), so that students' responses were not 

2 See the program description online at 

http://cty.jhu.edu/summer/catalogs/oscompsci.html 

30 

http://cty.jhu.edu/summer/catalogs/oscompsci.html


www.manaraa.com

influenced by the course content. The instrument was modified to include several items 

relating to logic and discrete mathematics, as well as a set of open-ended questions 

regarding the learners' reasoning. The instrument was designed so that it did not require 

programming knowledge, but rather the ability to scan and understand examples of 

assignment of values to variables. The initial instrument was modified to include 

biographical questions including age, gender, background, etc.; questions focused on 

logic, permutations, and assignment of values to variables; and open-ended questions that 

asked the participant to reflect on the task and their own reasoning. U.K.-centric terms 

appearing on the cover page of the test were translated to their American counterparts: A-

levels replaced with AP Exams, for example. The original twelve questions from 

Dehnadi's instrument and their responses appeared unaltered. Completed assessments 

were returned to the researcher for scoring. Results were not made available to the course 

instructors, in order to prevent any unintentional bias in grading of course assignments. 

Students were assigned the task of completing two web-based activities as a 

homework assignment, in order to minimize the amount of in-class time used by this 

study. These activities included Mastermind® and Sudoku (described in Appendix F. 

Mastermind® Game and Appendix G. Sudoku Game, respectively). For the few 

university and community college participants who completed the online tasks, data 

about the participant's actions in each game were captured electronically for later 

analyses including participant's name, start and stop time, and any errors made. 

Participants were also asked to respond to five open-ended questions at the end of each 

task as described in Appendix H. Open-Ended Questions. It was hoped that these 

31 



www.manaraa.com

questions would offer insight into participants' reasoning that might not otherwise be 

reflected in the quantitative analysis of other response items. 

For each online task, the participant was introduced to the game through an 

abbreviated instructional version of the game (for example, a 4x4 Sudoku board, rather 

than the full 9x9 board). The full activity was then presented and the participant was 

asked to complete two complete instances of each game. Start and stop times were 

recorded electronically for each instance, as well as any moves made during play. Two 

instances were presented in order to address those who were initially unfamiliar with the 

rules of each game. 

Students' final grades were collected at the end of term and analyzed in 

conjunction with all data collected to identify which variables or combination of variables 

served as the best predictor of those final grades. 

Data Analyses 

Microsoft Excel3 was used to enter the data and generate the computed values as 

described above. The R interactive statistical environment4 was used to analyze the 

dataset after using the gdata library to read the Excel spreadsheet into R (Warnes & 

Gorjanc,2008). 

An exploratory data analysis was conducted in order to use effectively the 

collected data as predictors for student performance. Item-level responses, computed 

3 Microsoft Excel version X SRI on Mac OS X version 10.5.2 

4 R version 2.6.2 on Mac OS X version 10.5.2 

32 



www.manaraa.com

values based on those responses, and combinations of both were used as predictor 

variables for the criterion variable, students' final grades. Item level response variables as 

well as predictor variables that were derived from this dataset are described in Appendix 

A. Early-course Variables of Interest. There is evidence in the literature that suggests that 

prior programming experience and diversity of languages used, as well as consistency of 

mental models are positively correlated with student performance. 

This analysis was designed to reveal which variables served as the most effective 

predictors of students' final grades either in raw form. For example, variables were 

combined, transformed using mathematical functions, or omitted from the analyses 

following initial consideration. Algorithmic methods, such as recursive partitioning, can 

be especially effective in learning how variables work in combination with one another. 

Also, the three datasets that correspond to the three instructional contexts were 

considered to determine whether the differing instructional contexts played notable roles. 

Exploratory data analyses were conducted in order to reveal details about relationships 

among the numerous variables. 

Algorithmic techniques such as regression trees were examined in an attempt to 

ensure the most effective use of all predictor information for prediction of students' final 

grades. These modern techniques generally permit the analyst to go beyond model-based 

predictions, particularly in the context of studying moderating effects and interactions 

among the predictor variables with respect to a criterion variable (Breiman, 2001). These 

techniques draw heavily from the machine learning community, where they have been 

used to evolve learning solutions for pattern recognition, genetics, and other highly 

complex decision algorithms (Breiman, 2001). 

33 



www.manaraa.com

Human Subjects Review 

Institutional Review Board (IRB) approval was obtained from the University at 

Albany. Permission for the participation of students at each participating institution was 

sought and granted. Measures of student performance and demographic data were 

collected as part of this study and stored on the researcher's computer and backup media. 

Collected data was secured and maintained so as to protect the exposure of students' data 

to unauthorized individuals. Since students may receive failing grades in the courses, 

inadvertent exposure of collected data posed a minimal risk of harm to the student 

participants in the form of social embarrassment. Participating students were asked to 

sign and return one copy of the informed consent/assent form and parents of minors were 

asked to sign and return a parental permission form (see Appendix I. Informed Consent 

Form, Appendix J. CTY Informed Assent Form, and Appendix K. CTY Parental 

Permission Form). 

The Office of Institutional Research at the University at Albany was notified of 

research being conducted within the University and appropriate consent obtained from 

the Computer Science Department Chair and the course instructor. No data was collected 

about the instructor or his or her instructional methods. No observations were made of the 

class in-progress. As a result, there was only minimal risk of harm to the department and 

to the instructor in the event of exposure of collected data. 

34 



www.manaraa.com

Chapter 4. Data Analysis 

As described above, the purpose of this research was to collect information about 

novice computer programming students enrolled in introductory computer programming 

courses as early in each course as possible and to use that information effectively to 

predict their final numeric course grade. 

In this section I highlight pertinent aspects of the sample statistics and then use 

linear models and recursive partitioning to generate regression trees in various attempts to 

describe the information content in these data with interactions as defined within each of 

the regression trees presented. All analyses were performed using the R statistics package 

(R Development Core Team, 2008). A typical interactive session with R is included in 

Appendix M. 

Characteristics of the Sample 

Approximately 175 students were invited to participate in the study of which 144 

signed the assent/consent to participate form and submitted the in-class, paper-based 

assessment instrument. The assessment instrument was administered during the first 

week of classes in each instance. Eight students withdrew early in the semester 

necessitating their elimination from the sample, resulting in 136 subjects in the sample 

consisting of 24 (17.6%) females and 112 (82.4%) males. The sample consisted of 30 

(22.1%) high school-aged students taking a summer computer science enrichment course, 

35 (25.7%) community college students enrolled in an introductory programming course, 

and 71 (52.2%) students from a 4-year university enrolled in an introduction to 

35 



www.manaraa.com

programming course for computer science majors. A cross-tabulation of respondents by 

institution and gender is provided in Table 7. (Note: Table 7 through 

36 



www.manaraa.com

Table 17 summarize the descriptive information referenced in this section and can be 

found in Appendix L.) 

Of the 136 respondents, 80 (58.8%) reported at least some prior programming 

experience in languages including calculator scripting languages, visual basic (VB), C, 

C++, Java, JavaScript, PHP, and Pascal. A cross-tabulation of prior programming 

experience by programming language and gender is provided in Table 8. 

A summary of descriptive statistics for continuous variables is provided in 

37 



www.manaraa.com

Table 9. Descriptions and coding information for variables is provided in Appendix A. 

Early-course Variables of Interest. 

The criterion variable for this study is students' final numeric course grade in the 

computer programming course taken, represented asfinalnumeric in this dataset. Final 

course grades ranged from 18.26 to 100 on a scale of 100 with a sample mean of 75.12 

and a standard deviation of 20.23. 

The paper-based assessment instrument also included several items for which 

responses were categorical, rather than continuous. These are presented in Table 10 

through Table 15. 

Questions 7 through 18 of the paper-based assessment instrument paralleled 

questions from Dehnadi's assessment instrument as they concern assignment of values to 

variables. Each question presented respondents with 10-18 possible choices with the 

option for respondents to provide a novel response not included in the prepared 

responses. For coding purposes, responses were numbered from 1 to 18. Respondents 

who chose to provide novel answers were coded as "0" for record keeping purposes. 

Additionally, some respondents indicated multiple responses to one or more questions. 

These multiple responses were coded as "98", if and only if all of the responses for that 

question indicated that variables were of equal value (e.g., a=5, b=5, c=5). Otherwise, 

such multiple responses were coded as "99". A tabulation of the response given for each 

question is provided in Table 16. 

Using Dehnadi's scoring guide, item level responses were interpreted as evidence 

of respondents' use of mental models of the assignment of values to variables. For 

example, for question 7, a response of 4 indicated the use of mental model 2. If a given 

38 



www.manaraa.com

mental model was used by a respondent 8 or more times, that respondent is said to have a 

consistent mental model at the CO level. The number of respondents who demonstrated 

mental model consistency at the CO level is shown in 

39 



www.manaraa.com

Table 17, reported by the mental model used and gender. The CO variable codes for 

which, if any, mental model was used consistently by the respondent. For example, if the 

count of M2 instances for a respondent was greater than or equal to 8, CO would equal 2. 

Thus, a CO coding of 0 indicates no consistent mental model was demonstrated. 

An additional computed variable was introduced, cOb. This variable is a binary 

variable indicating whether a student had demonstrated use of a consistent mental model, 

consistent with Dehnadi's use of CO. This variable was coded 0 iff no consistent mental 

model use was demonstrated and 1 otherwise; preliminary analyses had shown there was 

no predictive value in this key variable beyond this distinction.. 

Details of the meaning of each mental model are provided in Figure 3. For the 

purposes of this study, mental model 2 is the "correct" mental model for assignment of 

values to variables in the programming languages used in participating courses. 

Recursive Partitioning and Regression Trees 

Recursive partitioning is an analytical method that algorithmically explores a set 

of variables in order to find the optimal use of information in those variables (Breiman, 

1998). For a regression tree, scores on a criterion variable (here,finalnumeric) are sorted 

from small to large. Recursive partitioning is used at the outset to learn which 

independent variable best splits the criterion scores so that 'low' scores are distinguished 

from 'high' scores; all predictors, both categorical and continuous, are examined by the 

tree algorithm. The split point for the criterion variable is also determined by the 

algorithm. This process is then repeated for a series of binary splits, such that within each 

criterion subgroup (say 'low') another split is sought, based on all independent variables 

40 



www.manaraa.com

(possibly including the one used at the outset) so that more distinctions can be obtained 

among criterion subgroups; this is continued recursively until no further partitioning 

'worthwhile' for predicting the criterion. Various different methods can be employed 

within the algorithm to define what is meant by the term 'worthwhile.' The resulting 

structure may be visualized as a binary regression tree, that is a hierarchy, with splits 

representing each bifurcation. 

Tree results are invariant with respect to monotonic transformations of the 

continuous independent variables; for example the tree would not change if each 

continuous variable were exchanged for its square root or logarithmic counterpart. 

Furthermore, trees automatically provide information on how independent variables 

interact with one another (or with themselves) for prediction of the response variable. At 

any particular point in the creation of a branch in a tree, all variables, including those that 

have been used above that branch, are considered by the algorithm for splitting the 

response set. When predicted values are computed from a completed tree with k leaves, 

the predicted values of the response variable, based on the predictors, consist of the 

means of the response scores in respective k subgroups that correspond to those leaves. 

The example shown in Figure 7 introduces this idea most simply through the use of a 

single independent variable with one binary split. Notice that to specify "cO < 1" on the 

top line is to say that scores on the cO variable < 1 were obtained by 71 students with a 

mean score of 68.46. Further, there were 65 students with cO scores > 1 with a mean of 

82.40. The latter two means are the predicted scores for this tree (repeated 71 times and 

65 times, respectively); these two subgroups have been 'optimally' separated by the 

regression tree. 

41 



www.manaraa.com

~eQ«4-

68146 82.4 
n=71 n=65 

Figure 7: Regression Tree, where (finalnumeric ~ cO) 

The one variable regression tree in Figure 7 parallels Dehnadi's research question: 

does consistency of mental model differentiate students with low final numeric grades 

from students with high final numeric grades. As we can see from the regression tree, 

absence of a consistent mental model (indicated as c0< 1) identifies 71 students who 

received low final numeric grades (mean 68.46) and 65 students who received high final 

numeric grades (mean 82.4) in their introductory programming courses. The correlation 

coefficient for this model is 0.34 (R2 = 0.12) suggesting that accounting for additional 

information about initial student performance may be beneficial. 

Figure 8 presents a maximal model that incorporates, in addition to cO, other 

variables such as gender and institution5, the length of responses to qualitative questions 

on the paper-based assessment instrument, the length of time spent completing the 

instrument, the number of valid responses to the Dehnadi-style questions, and a computed 

mental model variable, m2.mJ0.ne. 

Institution is a categorical variable coded by R as: a=CTY, b=community college, 

c=university. 

42 

http://m2.mJ0.ne


www.manaraa.com

-w2tflrtftrRe<-?sS--

.JOS8tUti0R=fe— 

49199 
n=15 

68I29 
n=12 

rt=10 
85131 

~4$Qlm<44 

70103 
n=8 q24Jere 

69172 
n=7 

L*M.5 
83138 
n=22 

89101 
n=27 

Figure 8: Regression Tree, where (finalnumeric ~ cO + gender + institution + 

m2.ml0.ne + valid + ql91en + q201en + q211en + q221en + durationmins) 

The variable m2.ml0.ne was computed as the sum of instances of evidence for 

use of mental model 2 (the "correct" Java-style mental model), mental model 10 

(interpretation of statements as simple equations with a single answer given), and coded 

category 98 or "ne" (which is the same as mental model 10, but with multiple responses 

given). Early exploratory analysis suggested that students with a consistent mental model, 

either model 2 or model 10, tended to have higher final numeric grades than those with 

consistent mental models in other model categories as shown in Table 2. All other mental 

model types were negatively correlated with finalnumeric. Note that each of the latter 

variables correlated positively with the finalnumeric criterion. Thus, the computed 

variable— m2.mW.ne—was used to replace these individual variables and incorporated 

43 



www.manaraa.com

in the independent variable set so that information in these additionally names variables 

would become part of the mental model variable used for predicting final numeric grade. 

Table 2. Correlation matrix for positively correlated mental models 

finalnumeric 
m2 

mlO 
ne 

m2.ml0.nc 

finalnumeric 
1.00 
0.22 
0.18 
0.08 
0.29 

m2 
0.22 
1.00 
0.31 

-0.26 
0.84 

mlO 
0.18 
0.31 
1.00 

-0.14 
0.47 

ne 
0.08 

-0.26 
-0.14 
1.00 
0.25 

m2.ml0.ne 
0.28 
0.84 
0.47 
0.25 
1.00 

Inclusion of the above variables presents a more intricate regression tree, making 

interpretation more difficult. However, the correlation coefficient for this model is 0.64 

(R2 = 0.40), representing an improvement over the simpler one variable model of Figure 

7. 

Several terms in the partition formula were unused by the recursive partitioning 

algorithm, namely cO, gender, valid, ql9len, allien, and durationmins. These variables 

were ignored by the tree algorithm because, in relation to the variables seen in the tree, 

these variables did not improve the predictions. Of special note is the fact that variable cO 

has been ignored in preference to ml.ml0.ne. 

This means that the tree of Figure 8 could have been generated using the 

simplified formula defined by 

finalnumeric ~ institution + ml.ml0.ne + qlOlen + allien 

The m2+m!0+ne variable (represented in the tree as m2.ml0.ne~) enters the tree at 

the root with a critical value of 7.5. Subsequent splits rely upon the institutional 

affiliation of the respondent and the length of responses to qualitative questions. Note that 

the tree uses the categorical variable institution three times to split the subgroups. The 
44 

http://ml.ml0.ne
http://m2.ml0.ne~


www.manaraa.com

institution=b branch shows that community college students (split to the left) tend to 

have the lowest final numeric grades. Within the tree, on the right hand side, the 

institution=ab branch shows that CTY and community college students (split to the left) 

tend to have lower final numeric grades than university students (shown in the split to the 

right). 

Figure 9 shows a revised tree with a new computed variable, cc, introduced to 

allow for comparison of the community college group to the CTY and university groups, 

since most of the variability in institution was related to community college students. 

49189 
n=15 

HfnarfB4&-fteK-?r5--

m2-.ffi40vftes»»3 

n=8 
77S75 
n=42 

^ * te f i> -54-

87123 
n=18 

86114 
n=30 

Figure 9: Principal Regression Tree, where (finalnumeric ~ cc + m2.ml0.ne + 

q211en) 

Of interest is to what extent institution separated final numeric scores, compared 

to the other numeric variables. The community college group (indicated by "cc < 0.5" in 

45 



www.manaraa.com

the principal regression tree, above) tended toward both the lower end (mean 49.99) and 

middle (mean 73.64) of the final numeric grade range. While representing a slight loss of 

predictive accuracy over the regression tree of Figure 8, correlation is still quite high with 

a correlation coefficient of 0.60 (R2 = 0.36). 

Consistency of mental model (some combination of model 2, model 10, and ne) 

remains paramount in this regression tree. For students without consistent mental models 

(as evidenced by their scores on the variable m2.ml0.ne), those at the community college 

tended to score lower than those at other institutions. For students with consistent mental 

models (m2.ml0.ne), those who provided more concise responses to qualitative item 21 

("what was the most difficult question?") scored better than those with longer responses. 

Comparison of tree-based predictions of final numeric grades 

with actual final grades 

Figure 10 shows a scatter plot of predicted final numeric grades, based on the 

principal regression tree, versus actual final numeric grades. Study of this plot shows that, 

despite more or less optimal use of the information in all of the predictor variables, the 

association is far from a simple linear, straight-line form. Indeed, the correlation between 

these two variables is 0.60 (R2 = 0.36), indicating that 36% of the variation in 

finalnumeric is predicted by this tree, while 64% of that variance is not predicted from 

the tree. From one point of view there are two groups of students whose performance 

were particularly notable in reducing the predictability of the criterion scores. Namely, 

(a) those who were predicted to have low final numeric grades, but who had high final 

numeric grades, and (b) those who were predicted to have high final numeric grades, but 

46 



www.manaraa.com

had low final grades. Detailed examination of these subgroups, not given here, shows few 

similarities among either the members of group (a) or group (b) in this dataset. 

o 

ffl> 

0 

0 

o 
0 

0 

0 

o 

o 

% 
o 
0 

^ 
o 

o 

cP 

o 

0 

o 
0 

o 
8 

0 

0 

o 
0 

0 

0 

o 
0 
0 

CP 

o 

0 

% 
0 

* 

9 

0 0 

0 

0 

o 

0 

o 

% 
o 
o 

6> 

0 
o 

o 

o 

0 

0 
o 

o 

0 

0 

s 
m 

o o 

It 
o 

o 
0 

0 

70 

Figure 10: Scatter plot of predicted final grades (based on principal regression tree) 

versus actual final numeric grades 

Comparison of linear models with the Principal Regression Tree 

When a linear model that incorporates the same variables as the regression tree of 

Figure 8 is specified (finalnumeric ~ cO + gender + institution + m2.ml0.ne + valid + 

ql9len + q20len + allien + allien + durationmins), predictive accuracy is greatly 

reduced. This main effects linear model yields a multiple correlation coefficient of 0.54 

(R2 = 0.29), which is markedly lower than that for the principal regression tree. This is 

not necessarily surprising since by definition the tree is built upon interaction terms and 

47 



www.manaraa.com

the main effects (linear) model uses no interactions. But quantification of the difference 

in predictive usefulness is still helpful. In the linear model, only the terms m2.ml0.ne and 

qlllen are significantly different from zero at the 0.01 level, as indicated in Table 3. 

Table 3. Coefficients and t-statistics for main effects linear model; call: finalnumeric 

~ cO + gender + institution + m2.ml0.ne + valid + ql91en + q201en + q211en + q22Ien 

+ durationmins 

Term 

(Intercept) 
cO 
gender 
institutionCC 
institutionUniversity 
m2.ml0.ne 
valid 
ql91en 
q201en 
q211en 
q221en 
durationmins 

Estimate 

63.93 
0.76 
5.97 

-10.11 
2.75 
1.26 

-0.11 
0.03 
0.08 

-0.13 
0.06 

-0.08 

Std. 
Error 

7.76 
0.63 
4.41 
5.11 
4.19 
0.43 
0.42 
0.04 
0.04 
0.05 
0.05 
0.27 

t value 

8.24 
1.22 
1.35 

-1.98 
0.66 
2.90 

-0.28 
0.66 
2.13 

-2.69 
1.29 

-0.30 

Pr(>ltl) 

«0.00 
0.23 
0.18 
0.05 
0.51 
0.00 
0.78 
0.51 
0.04 
0.01 
0.20 
0.77 

*** 

#* 

* 
** 

Signif. codes: 0 '***' 0.001 '**'0.01 '*'0.05 '. '0.1 " 1 

The main interactions linear model again highlights the significance of the 

community college affiliation as well as consistency of mental model in the m2.mlO.ne 

sense and the length of responses to question 21. It also indicates a significant 

contribution of q20len. In several regression tree analyses, however, the contribution of 

q20len (in terms of interaction) was small when combined with q21len; however, this 

variable added considerable complexity to the interactions so q20len was omitted from 

the following linear model. 

Table 4 shows the coefficients and t-statistics for a linear (interaction) model. 

Terms with no colon (:) are main effects terms. Terms with a single colon (e.g., 
48 

http://m2.mlO.ne


www.manaraa.com

cc:m2.ml0.ne) are first order interactions, while the term with two colons (i.e., 

cc:m2.ml.ne:q21len) is a two way interaction. Two way interactions are difficult to 

interpret in any straightforward way, but the fact that the two way interaction term is at 

least nominally significant suggests that there is a complicated response surface cutting 

across the three variables with respect to the criterion, finalnumeric. 

Table 4. Coefficients and t-statistics for interaction effects linear model; call: 

finalnumeric ~ cc * m2.ml0.ne * q211en 

Term 
(Intercept) 
cc 
m2.ml0.ne 
q211en 
cc:m2.ml0. 
cc:q211en 
m2.ml0.ne: 
cc:m2.ml0. 

ne 

:q211en 
ne:q211en 

Estimate 
80.60 

-41.93 
0.05 

-0.14 
3.69 
0.24 
0.01 

-0.03 

Std. Error 
4.19 
8.96 
0.56 
0.07 
1.05 
0.13 
0.01 
0.01 

t value 
19.23 
-4.68 
0.08 

-2.00 
3.51 
1.93 
1.68 

-1.98 

Pr(>ltl) 
= 0.00 

0.00 
0.93 
0.05 
0.00 
0.06 
0.10 

= 0.05 

#** 

*** 

* 
*** 

. 

Signif. codes: 0 '***' 0.001 '**'0.01 '*'0.05 ' . '0.1 " 1 

Each of the p-values for the interactions linear model is fairly small, with the 

exception of the main effects variable m2.ml0.ne—somewhat unexpected given the role 

that variable plays in the regression trees. All other main effects and interaction terms are 

statistically significant. The multiple R-squared value of for the linear (interaction) model 

is 0.23. 

Scatter Plot Matrices for Selected Sets of Variables 

Regression trees fail to speak to the question of how members of groups are 

distributed with respect to some variable of interest. For example, while regression trees 

offer a predictive model and place each student in one of the prediction categories, they 

do not distinguish in this context between students with consistent and non-consistent 

49 



www.manaraa.com

mental models (here, those distinguished by cOb=0, versus 1) for variables associated 

with the principal tree. Scatterplot matrices, especially when enhanced effectively, offers 

visual information that can add insights about relationships between such variables. 

Figure 11 shows an enhanced scatterplot matrix. It has three features in addition 

to its conventional counterpart: histograms are provided along the diagonal of the matrix; 

loess regression lines are superimposed on each x,y plot to show predictability of each 

variable from each other variable, without linear constraints; and points are of two kinds, 

here distinguished by filled triangles that represent Dehandi's notion of consistency of 

mental models versus open circles for students who did not demonstrate consistent 

mental models (using variable cOb). 

The four variables in this figure include the criterion variable, finalnumeric, and 

three predictors thought to be especially valuable for predicting this criterion. The 

variable m2.ml0.nej is a jittered version of m2.ml0.ne. Jittering adds a small random 

variable to the base variable in order to offset data points on a plot, thereby making 

identification of different points easier. 

The variable cOb is a binary variable indicating whether the student demonstrated 

a consistent mental model in the Dehnadi sense (it is based wholly on cO). Open circles 

are used to indicate no demonstrated consistency, while filled triangles are used to 

indicate demonstrated consistency. The points associated with the variable cOb distinction 

show a slight positive correlation between demonstration of a consistent mental model 

and final numeric grade. However, Figure 11 shows that there is considerable variation 

across the finalnumeric score range of the triangles and circles, so much so that cOb is not 

a particularly good predictor variable. 

50 



www.manaraa.com

Figure 11, and especially the loess regression curve, also shows that both 

m2.ml0.ne and q21len are better predictors at the high end of the final numeric grade 

range than they are at the low end of the range. Most students either showed no 

inclination toward using mental models 2,10, or ne or showed a strong inclination to use 

those mental models. Relatively fewer students appear to use those models only some of 

the time. 

Genemlizability 

A variety of attempts were made to examine generalizability properties of the 

predictive results, separately for trees and linear models. In the end, the decision was 

made that there are too many idiosyncratic features of the data that were collected to 

make this enterprise effective. In fact, however, the test statistics associated with the 

linear model (Table 4) speak to generalizability in one key sense: that is, all predictors, 

except m2.ml0.ne (as a main effect) are either statistically significant predictors of the 

criterion or nearly statistically significant predictors, in the sense that the regression 

coefficients in the model are statistically different (or near so) from zero. 

51 



www.manaraa.com

«-

«s« 

•S3 « 

, . 

« • » 

*v 
«•* \ 

» o 

m 

* . •* 

i ° ° 

o o 

« » » * « < ! s i ws axj »o so oo 

Figure 11: Enhanced scatter plot matrix to highlight effects of Dehnadi's consistency 

variable 

52 



www.manaraa.com

Figure 12 is also an enhanced scatter plot with similar features. Here, however, 

the two groups highlighted are those at the community college on the one hand (triangles) 

and those at either CTY or university on the other (circles). Note that the first three 

variables in Figure 11 and Figure 12 are identical, save for the ways that data points are 

highlighted. Although the important role of distinguishing between community college 

students and others has been seen in the summary statistics for both the trees and the 

linear model analyses. Figure 12 helps make clear that despite notable, even statistically 

significant differences between community college and other students (above), there are 

many similarities between these groups of students; this is seen in the way the triangles 

(for community college students) are broadly distributed in these scatterplots for each of 

the separate x,y plots when the x's are the 'best' predictors of the criterion. 

Figure 16 (found in Appendix N. Enhanced Scatterplot of Selected Variables) 

shows the relationships among selected variables to enlighten those interested in 

exploring the dataset further. Figure 17 (found in Appendix O. Enhanced Scatterplot of 

Linear Model and Principal Regression Tree Predicted Values) shows the correlation 

between predictions made by the Principal Regression Tree and linear (interaction) 

model. Again, this is offered to enlighten those interested in the predictive accuracy of 

the tree-based and linear models. 

53 



www.manaraa.com

c 

£ JL 
|3 r _ i _ , 

•• I " - ' 

1 cziz-"1 

1 ° <* 

o«pJo o« 
p °i© 

e?°t 

1 I 1 
t & 

*t 
•* 

<* 

8 
• 
i 
o 

\ ° 
* 1 8 
* 
* \ « 
« 18 
4 I 

ffs «« »* m » ots 

Figure 12: Enhanced scatter plot matrix for variables in the Principal Tree 

54 



www.manaraa.com

Chapter 5. Discussion and Conclusions 

This study, in part, emulates a study conducted recently in the United Kingdom 

concerning the mental models of novice programming students (Dehnadi, 2006). The 

instrument was modified to include several questions relating to logic and discrete 

mathematics as well as several qualitative questions regarding participants' reactions to 

the instrument. Item level responses to these questions were considered as possible 

predictors of student's final numeric grade in introductory computer programming 

courses. 

Additionally, several variables were computed based on responses to the above 

questions. These computed values were intended to turn qualitative responses into 

quantitative data, convert multi-valued categorical variables into simple contrast 

variables, and explore fully the information contained in the item level responses. 

Two online, logic-based games were introduced in an effort to identify which, if 

any, predict final numeric grade in introductory computer programming courses. 

Unfortunately, response rates to these online games was too low at both the community 

college and university participating in this study, to make the games data usable. Future 

studies should strive to ensure that response rates are higher by incorporating game play 

into class time, offering rewards for task completion, and other structural incentives to 

encourage participation. 

All available data were submitted to both linear model and recursive partition 

algorithms (Therneau, Atkinson, & Ripley, 2008) in R in order to identify statistically 

useful variables and simplified models. Based on this analysis, to prediction 

55 



www.manaraa.com

methodologies were considered and these resulted in the selection of a principal 

regression tree and linear models with interaction effects that demonstrated reasonable 

predictability with relatively few independent variables. 

The first research question asked: What variables or combination of variables 

collected at the start of term serve best as predictors of students' final numeric grades at 

the end of term? 

This question is straightforward to answer. Based on the analyses of both the tree-

based and linear models the variables cc, m2.ml0.ne, and q21len serve as the best 

predictors of final numeric grade. They are best used in interaction models (either tree-

based or linear models). 

The second research question stated: Following Dehnadi, is the measure of 

consistency of students' mental models regarding assignment of values to variables at the 

outset of the course positively correlated with students' final grades at the end of the 

course? And, if so, how strong is that relationship? 

Both the tree-based and linear models reflected the importance of m2.ml0.ne as a 

predictor of finalnumeric, supporting Dehnadi's contention that there exists a critical 

level of consistency below which students tend to have lower numeric grades. 

Additionally, the critical value of this variable as determined by the recursive partitioning 

algorithm (7.5) is consistent with Dehnadi's consistency being defined as 8 or more 

instances where a given mental model was demonstrated (see Figure 8 and Figure 9). 

Contrary to what Dehnadi found, however, the simple use of his variable cO (here, 

cOb, the binary variable used to index consistency or not) did not result in strong or clear 

prediction of the final numeric grades. In fact, the variable cOb was superseded by the 

56 

http://m2.ml0.ne


www.manaraa.com

variable m2.ml0.ne (that incorporated more mental models) in both the tree-based and 

linear models; and interactions with this variable were especially notable. 

The most important variable, in terms of statistical prediction, was m2.ml0.ne, 

which was a better predictor than ml alone. There did not appear to be any notable 

gender differences, given the available data. 

The third research question stated: Are there additional predictor variables that 

tend to moderate or condition the relationship(s) between the main 'consistency' 

measures and the outcome measure? If so, what is the nature and extent of the moderator 

effects? 

Gender was recorded and used in preliminary analyses of both kinds, but in all 

cases had a statistically smaller role to play in predicting the numeric criterion variable 

than the other, substantive, variables. Total programming courses taken (the variable 

totalprgcourses) was also used in preliminary analyses of both kinds. Again, in all cases, 

totalprgcourses has a statistically smaller role to play in predicting finalnumeric than the 

other variables. 

The fourth research question was: What are the similarities and differences among 

the predictability results across the three main groups: university students, community 

college students, and (high performing) high school students? 

Attendance at community college defined both the low end of the final numeric 

grade range and mid-range, so that a binary variable that distinguished community 

college from all other students became especially important in each multiple predictor 

context. To give an indication of the importance of this variable, a linear (interaction) 

model that did not include the community college/other distinction yielded a squared 

57 



www.manaraa.com

multiple R of 0.093, while the counterpart with this variable yielded a squared multiple R 

of 0.259. The multiple correlations in the two cases were 0.31 and 0.51 respectively. 

General discussion 

Variables that could be collected during a single class period early in the term 

were identified and gathered by means of a paper-based assessment instrument 

incorporating questions about prior programming experience, logic, combinatorics, and 

assignment of values to variables. This instrument was designed so as not to be a test of 

prior programming experience. That is, the assessment did not present blocks of 

programming code for students to interpret. Such an assessment would have amounted to 

determining whether students already knew the programming language of interest, which 

while useful to know, is a poor substitute for an assessment that can identify novice 

programmers who will be likely to struggle with the course. Even so, 17 students 

explicitly identified confusion over the meaning of INT in Dehnadi's questions as at least 

a source of uncertainty in their responses. It is unclear that the use of the INT keyword is 

either necessary or helpful to the questions as presented. Questions 7-18 may well benefit 

from elimination of the INT keyword, allowing students to focus on the assignment 

statements themselves, rather than on programming language syntax. 

Limitations 

Given the wide variety of instructional styles and student learning styles, one 

might expect that there would be confounding variations of responses and student 

performance measures with different instructors, programming languages, course 

formats, etc. However, researchers have reported that the percentage of students failing 
58 



www.manaraa.com

introductory programming courses remains surprisingly constant, regardless of these 

factors (Bennedsen & Caspersen, 2007; Dehnadi, 2006; Ma et al., 2007). In short, the 

question of instructor differences may not be important, so long as grading is rigorous 

and honest (Dehnadi & Bornat, 2006). 

The generalizability of the study was limited by the focus on Java-style 

programming languages. Other languages, such as LISP and Prolog, use very different 

models of assignment of values to variables. The mental models and reasoning skills 

addressed in this study may not have the same import in non-imperative languages. This 

is taken as an area for future research, rather than a true limitation. What reasoning skills 

and mental models might play a similar role for those languages remains an open 

research question. 

Also, the various methods of scoring student performance in the three contexts 

studied (CTY, community college, and university) complicate the interpretation of final 

numeric grade distributions. A common post assessment activity that addressed the 

underlying programming concepts addressed in these courses would allow for a more 

comparable criterion variable. 

Finally, the study sample size was constrained based on actual enrollment in 

courses in the summer and fall 2007 terms. The analysis methods used are known to be 

robust, even for relatively small sample sizes. The sample size for this study (n = 137) is 

reasonable for use of recursive partitioning algorithms and regression trees. 

59 



www.manaraa.com

Future Research 

This study provides the foundation for a wide range of additional research. 

Several variables were found to be useful in predicting finalnumeric when used in 

interaction models, suggesting that further research on their role and generality is called 

for. 

• Does first programming language influence the applicability of the study? 

To what degree can the same assessment instruments be used to predict 

students' final grades in programming courses that use non-Java-style 

languages, such as LISP or Prolog? 

• Does the choice of object-oriented programming language influence the 

assessment methods? Do the same assessment methods apply equally well to 

learners of other object-oriented languages, such as Ruby or C++? 

• What mental models are central for functional programming? If the 

assessment instruments do not serve as a predictor when a functional language 

is the introductory language, then what other mental models and deductive 

skills, if any could be used as the basis for similar assessment instruments 

aimed at functional languages, such as LISP? 

• What mental models are central for logical programming? If the 

assessment instruments do not serve as a predictor when a logical language is 

the introductory language, then what other mental models and deductive 

skills, if any could be used as the basis for similar assessment instruments 

aimed at logical languages, such as Prolog? 

60 



www.manaraa.com

• Are the assessment instruments affected by cultural differences? Would 

the same instruments serve as a predictor in non-English courses? 

• Do the assessment instruments predict students' final grades for high 

school novice programmers? As the CS curriculum funnels down into high 

schools and more high school students take introductory programming 

courses, will these instruments predict high school students' final grades in 

those courses? 

• Do the assessment instruments predict students' final grades for 

community college novice programmers? Is there an appreciable difference 

between community college and university novice programmers with respect 

to their mental models? 

• Do the assessment instruments correlate with AP computer science 

scores? Given the current emphasis on Java programming in American AP 

computer science courses, do the instruments predict students' AP scores? 

• Can we design instructional interventions that will aid students in 

learning to program? If the consistency of mental models of assignment are 

critical to success, can we develop instruction based on improving those 

mental models, improving their consistency, and so on? 

• Does explicit exposure to mental models improve students' final grades? 

Would explicit instruction about the nature of mental models allow students to 

be more deliberate about their thinking? 

As the rate of new computer technology developments increases, new and 

exciting applications of mental model theory to CSEd also evolve. How might parallel 

61 



www.manaraa.com

programming, high performance computing, or quantum computation be related to users' 

mental models of those topics? The range of topics is limited only by the progress of 

technology and our willingness to explore human understanding. 

62 



www.manaraa.com

References 

Bayman, P., & Mayer, R. E. (1983). A diagnosis of beginning programmers' 

misconceptions of BASIC programming statements Communications of the ACM, 

26(9), 677-679. 

Ben-Ari, M. (1998). Constructivism in computer science education. Paper presented at 

the 29th SIGCSE Technical Symposium on Computer Science Education. 

Ben-Bassat Levy, R., Ben-Ari, M., & Uronen, P. A. (2003). The Jeliot 2000 program 

animation system. Computers & Education, 40(1), 1-15. 

Bennedsen, J., & Caspersen, M. E. (2007). Failure Rates in Introductory Programming. 

SIGCSE Bulletin, 39(2), 32-36. 

Blake, M. B. (2006). It's back to school for IT. Retrieved October 26,2006, from 

http://news.com.com/Its+back+to+school+for+IT/2010-1011 3-6129515 .html 

Bonar, J., & Soloway, E. (1989). Pre-Programming Knowledge: A Major Source of 

Misconceptions in Novice Programmers. In E. Soloway & J. C. Spohrer (Eds.), 

Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Breiman, L. (1998). Classification and Regression Trees: Chapman & Hall/CRC. 

Breiman, L. (2001). Statistical Modeling: The Two Cultures. Statistical Science, 16(3), 

199-231. 

Brusilovsky, P., Kouchnirenko, A., Miller, P.,&Tomek, I. (1994). Teaching 

Programming to Novices: A Review of Approaches and Tools. Paper presented at 

the Educational Multimedia and Hypermedia, from 

63 

http://news.com.com/Its+back+to+school+for+IT/2010-1011


www.manaraa.com

http://eric.ed.gov/ERICDocs/data/ericdocs2/content storage 01/0000000b/80/23/ 

30/ad.pdf. 

Chittleborough, G., Treagust, D., Mamiala, T., & Mocerino, M. (2005). Students' 

perceptions of the role of models in the process of science and in the process of 

learning. Research in Science & Technological Education, 23(2), 195-212. 

Clancy, M. (2004). Misconceptions and Attitudes that Interfere with Learning to 

Program. In S. Fincher & M. Petre (Eds.), Computer Science Education Research 

(pp. 85-100). London, UK: RoutledgeFalmer. 

Cunniff, N., Taylor, R. P., & Black, J. B. (1989). Does Programming Language Affect 

the Type of Conceptual Bugs in Beginner's Programs? A Comparison of FPL and 

Pascal. In E. Soloway & J. C. Spohrer (Eds.), Studying the Novice Programmer. 

Hillsdale, NJ: Lawrence Erlbaum Associates. 

Day, D. L., & Kovacs, D. K. (Eds.). (1996). Computers, Communication and Mental 

Models. London: Taylor & Francis. 

Dean, C. (2007, April 17). Computer Science Takes Steps to Bring Women to the Fold. 

New York Times. 

Dehnadi, S. (2006). Testing Programming Aptitude. Paper presented at the Psychology of 

Programming Interest Group (PPIG). from 

http://www.cs.mdx.ac.uk/research/PhDArea/saeed/. 

Dehnadi, S. (2007). March 6,2007 Email. In W. E. J. Doane (Ed.). 

Dehnadi, S., & Bornat, R. (2006). The camel has two humps. Paper presented at the Little 

PPIG. from http://www.cs.mdx.ac.uk/research/PhDArea/saeed/. 

64 

http://eric.ed.gov/ERICDocs/data/ericdocs2/content
http://www.cs.mdx.ac.uk/research/PhDArea/saeed/
http://www.cs.mdx.ac.uk/research/PhDArea/saeed/


www.manaraa.com

Denning, P. J., Comer, D. E., Gries, D., Mulder, M. C , Tucker, A., Turner, A. J., et al. 

(1989). Computing as a Discipline. Communications of the ACM, 52(1), 9-23. 

Dijkstra, E. W. (1988). On the Cruelty of Really Teaching Computer Science. 

Du Boulay, B. (1989). Some Difficulties of Learning to Program. In E. Soloway & J. C. 

Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Du Boulay, B., O'Shea, T., & Monk, J. (1989). The Black Box Inside the Glass Box: 

Presenting Computing Concepts to Novices. In E. Soloway & J. C. Spohrer 

(Eds.), Studying the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum 

Associates. 

Duke, R., Salzman, E., Burmeister, J., Poon, J., & Murray, L. (2000). Teaching 

programming to beginners - choosing the language is just the first step. Paper 

presented at the Proceedings of the Australasian conference on Computing 

education, from 

http://portal.acm.org/citation.cfm?id=359381&dl=ACM&coll=portal. 

Ehrlich, K. (1996). Applied Mental Models in Human-Computer Interaction. In J. Oakhill 

& A. Garnham (Eds.), Mental Models in Cognitive Science: Essays in Honor of 

Phil Johnson-Laird (pp. 223-246). East Sussex, UK: Psychology Press. 

Fay, A. L., & Mayer, R. E. (1988). Learning LOGO: A Cognitive Analysis. In R. E. 

Mayer (Ed.), Teaching and Learning Computer Programming (pp. 55-74). 

Hillsdale, NJ: L. Erlbaum Associates. 

Fincher, S. (1999). What are we doing when we teach programming? Paper presented at 

the Frontiers in Education Conference. 

65 

http://portal.acm.org/citation.cfm?id=359381&dl=ACM&coll=portal


www.manaraa.com

Fincher, S., & Petre, M. (2004). The Field and the Endeavor. In S. Fincher & M. Petre 

(Eds.), Computer Science Education Research (pp. 1-81). London, UK: 

RoutledgeFalmer. 

Gagne, R. M., & Glaser, R. (1987). Foundations in Learning Research. In R. M. Gagne 

(Ed.), Instructional Technology: Foundations (pp. 49-83). Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Garnham, A. (1987). Mental Models as Representations of Discourse and Text. 

Chichester, England: Ellis Horwood Ltd. 

Gray, W. D., Goldberg, N. C , & Byrnes, S. A. (1993). Novices and programming: 

Merely a difficult subject (why?) or a means to mastering metacognitive skills? 

| Review of the book Studying the Novice Programmer |. Journal of Educational 

Research on Computers, 9( 1), 131 -140. 

Guzdial, M. (2004). Programming Environments for Novices. In S. Fincher & M. Petre 

(Eds.), Computer Science Education Research (pp. 127-154). London, UK: 

RoutledgeFalmer. 

Henderson, L. D., & Tallman, J. I. (2005). Stimulated Recall and Mental Models: Tools 

for Teaching and Learning Computer Information Literacy (Research Methods in 

Library and Information Studies). Lanham, MD: Scarecrow Press. 

Johnson-Laird, P. N. (1983). Mental models: towards a cognitive science of language, 

inference, and consciousness. Cambridge, Mass.: Harvard University Press. 

Johnson-Laird, P. N. (1988). The Computer and the Mind: an Introduction to Cognitive 

Science. Cambridge, Mass.: Harvard University Press. 

66 



www.manaraa.com

Johnson-Laird, P. N. (1989). Mental Models. In M. I. Posner (Ed.), The Foundations of 

Cognitive Science (pp. 469-500). Cambridge, MA: MIT Press. 

Johnson-Laird, P. N. (2005). Mental Model and Thought. In K. J. Holyoak & R. G. 

Morrison (Eds.), The Cambridge Handbook of Thinking and Reaconsing (pp. 185-

208). New York, NY: Cambridge University Press. 

Kahney, H. (1989). What Do Novice Programmers Know About Recursion? In E. 

Soloway & J. C. Spohrer (Eds.), Studying the Novice Programmer. Hillsdale, NJ: 

Lawrence Erlbaum Associates. 

Karsten, R., & Kaparthi, S. (1998). Using dynamic explanations to enhance novice 

programmer instruction via the WWW. Computers & Education, 30(3-4), 195-

201. 

Kay, R. H. The role of errors in learning computer software. Computers & Education, In 

Press, Corrected Proof. 

Kling, R. (1996). Computerization and controversy: value conflicts and social choices 

(2nd ed.). San Diego: Academic Press. 

Kuittinen, M., & Sajaniemi, J. (2004). Teaching roles of variables in elementary 

programming courses. Paper presented at the Proceedings of the 9th annual 

SIGCSE conference on Innovation and technology in computer science education. 

Levy, D. (2007). Computer science trouble lies in education, not jobs, Stanford professor 

says [Electronic Version]. Retrieved April 22,2007. 

Linn, M. C. (1995). Designing computer learning environments for engineering and 

computer science: The scaffolded knowledge integration framework. Journal of 

Science Education and Technology, 4(2), 103-126. 

67 



www.manaraa.com

Lister, R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer, J., Lindholm, M., et al. (2004). 

A multi-national study of reading and tracing skills in novice programmers. ACM 

SIGCSEBulL, 36(4), 119-150. 

Lorenzen, T., & Chang, H.-L. (2006). MasterMind®: A Predictor of Computer 

Programming Aptitude. SIGCSE Bull., 38(2), 69-71. 

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2007). Investigating the viability of mental 

models held by novice programmers. Paper presented at the Proceedings of the 

38th SIGCSE technical symposium on Computer Science Education, from 

http://doi.acm.org/10.1145/1227310.1227481. 

Margolis, J., & Fisher, A. (2003). Unlocking the Clubhouse: Women in Computing. 

Cambridge, MA: MIT Press. 

Mayer, R. E. (1981). The Psychology of How Novices Learn Computer Programming. 

ACM Computing Surveys, 13(\), 121-141. 

Mayer, R. E. (1988a). Introduction to Research on Teaching and Learning Computer 

Programming. In R. E. Mayer (Ed.), Teaching and Learning Computer 

Programming (pp. 1-12). Hillsdale, NJ: L. Erlbaum Associates. 

Mayer, R. E. (Ed.). (1988b). Teaching and Learning Computer Programming. Hillsdale, 

NJ: L. Erlbaum Associates. 

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Learning to program and learning to 

think: what's the connection? Communications of the ACM, 29(1), 605-610. 

McBride, N. (2007). The Death of Computing. Retrieved 2/4/2007,2007, from 

http://www.bcs.org/upload/amaxus_pdf/amaxus_conWebDoc_9662.pdf 

68 

http://doi.acm.org/10.1145/1227310.1227481
http://www.bcs.org/upload/amaxus_pdf/amaxus_conWebDoc_9662.pdf


www.manaraa.com

McKenna, P. (2000). Transparent and opaque boxes: do women and men have different 

computer programming psychologies and styles? Computers & Education, 35(1), 

37-49. 

Milne, I., & Rowe, G. (2002). Difficulties in Learning and Teaching 

Programming—Views of Students and Tutors. Education and Information 

Technologies, 7(1), 55-66. 

Papert, S. (1980). Mindstorms: children, computers, and powerful ideas. New York, NY: 

Basic Books. 

Pea, R. D. (1986). Language independent conceptual 'bugs' in novice programming. 

Journal of Educational Computing Research, 2(1), 25-36. 

Perkins, D. N., Hancock, C , Hobbs, R., Martin, F., & Simmons, R. (1989). Conditions of 

Learning in Novice Programmers. In E. Soloway & J. C. Spohrer (Eds.), Studying 

the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum Associates. 

Perkins, D. N., Schwartz, S., & Simmons, R. (1988). Instructional Strategies for the 

Problems of Novice Programmers. In R. E. Mayer (Ed.), Teaching and Learning 

Computer Programming (pp. 153-178). Hillsdale, NJ: L. Erlbaum Associates. 

R Development Core Team. (2008). R: A Language and Environment for Statistical 

Computing. Vienna, Austria: R Foundation for Statistical Computing. 

Robins, A., Rountree, J., & Rountree, N. (2003). Learning and Teaching Programming: A 

Review and Discussion. Computer Science Education, 13(2), 137-172. 

Sajaniemi, J., & Kuittinen, M. (2005). An Experiment on Using Roles of Variables in 

Teaching Introductory Programming. Computer Science Education, /5(1), 59-82. 

69 



www.manaraa.com

Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE, 

5(l),3-55. 

Smith, D. C , Cypher, A., & Tesler, L. (2000). Programming by example: novice 

programming comes of age. Communications of the ACM, 43(3), 75-81. 

Smith, P. A., & Webb, G.I. (1995). Reinforcing a Generic Computer Model for Novice 

Programmers. Paper presented at the Seventh Australian Society for Computers 

in Learning in Tertiary Education Conference (ASCILITE'95). 

Soloway, E., & Spohrer, J. C. (Eds.). (1989). Studying the Novice Programmer. Hillsdale, 

NJ: Lawrence Erlbaum. 

Stephenson, C , Gal-Ezer, J., Haberman, B., & Verno, A. (2005). The New Educational 

Imperative: Improving High School Computer Science Education. New York, 

NY: Association for Computing Machinery. 

Therneau, T. M., Atkinson, B., & Ripley, B. (2008). rpart: Recursive Partitioning 

(Version 3.1-39 for R). 

Tucker, A. (1996a). Crisis in Computer Science Education. ACM Computing Surveys, 

28(4). 

Tucker, A. (1996b). Strategic Directions in Computer Science Education. ACM 

Computing Surveys, 28(4), 836-845. 

Tucker, A., Deek, F., Jones, J., McCowan, D., Stephenson, C , & Verno, A. (2003). A 

Model Curriculum for K-12 Computer Science: Final report of the ACM K-12 

Task Force Curriculum Committee. New York, NY: Association for Computing 

Machinery. 

70 



www.manaraa.com

Turing, A. (1936). On Computable Numbers, with an Application to the 

Entscheidungsproblem. Proceedings of the London Mathematical Society, 42, 

230-265. 

United States Department of Labor. (2003). Tomorrow's Jobs. Retrieved February 15, 

2007. from http://www.bis.gov/oco/oco2003 .htm. 

United States Department of Labor. (2007). Computer Programmers. Retrieved February 

15, 2007. from http://www.bls.gov/oco/ocosl 10.htm. 

Vegso, J. (2005). Interest in CS as a Major Drops Among Incoming Freshmen [Electronic 

Version]. Computing Research News, 17. Retrieved February 15,2007. 

von Neumann, J. (1945). First Draft of a Report on the EDVAC: University of 

Pennsylvania. 

Warnes, G. R., & Gorjanc, G. (2008). gdata: Various R programming tools for data 

manipulation. 

Weinberg, G. M. (1988). The psychology of computer programming. New York, NY: 

Van Nostrand Reinhold Co. 

Wikipedia.org. (2007a). Mastermind® Game Board. 

Wikipedia.org. (2007b). SuDoku Game Board. 

Wu, C.-C, Dale, N. B., & Bethel, L. J. (1998). Conceptual models and cognitive learning 

styles in teaching recursion. Paper presented at the Twenty-ninth SIGCSE 

technical symposium on Computer science education. 

Xinogalos, S., Satratzemi, M., & Dagdilelis, V. (2006). An introduction to object-

oriented programming with a didactic microworld: objectKarel. Computers & 

Education, 47(2), 148-171. 

71 

http://www.bis.gov/oco/oco2003
http://www.bls.gov/oco/ocosl
http://Wikipedia.org
http://Wikipedia.org


www.manaraa.com

Yuen, A. (2006). Learning to program through interactive simulation. Educational Media 

International, 43(3), 251-268. 

72 



www.manaraa.com

Appendix A. Early-course Variables of Interest 

All of the following variables are collected during the first week of the course. 

Variable 

institution 

cty 

cc 

university 

age 

gender 

ap 

Source 

PAIa 

Computed 

Computed 

Computed 

PAI 

PAI 

PAI 

Description 

Student's institutional affiliation 

Indicator of CTY affiliation 

Indicator of community college 

affiliation 

Indicator of university affiliation 

Student's self-re ported age 

Student's self-reported gender 

The number of advanced 

placement-level courses taken in 

Coding 

CTY 

CC 

University 

0: Not CTY student 

1: CTY student 

0: Not community 

college student 

1: Community 

college student 

0: Not university 

student 

1: University 

student 

Integer 

0: female 

1: male 

Integer 

73 



www.manaraa.com

calculator 

vb 

c 

cpp 

Java 

javascript 

php 

pascal 

otherprgcourse 

totalprgcourses 

PAI 

PAI 

PAI 

PAI 

PAI 

PAI 

PAI 

PAI 

PAI 

Computed 

high school 

Prior experience programming 

calculators 

Prior experience programming in 

Visual Basic 

Prior experience programming in 

C 

Prior experience programming in 

C++ 

Prior experience programming in 

Java 

Prior experience programming 

JavaScript 

Prior experience programming in 

PHP 

Prior experience programming in 

Pascal 

Previous coursework no 

reflected in prior programming 

experience 

Sum of calculator, vb, c, cpp, 

java, javascript, php, pascal, 

0:no 

1: yes 

0:no 

1: yes 

0:no 

1: yes 

0:no 

1: yes 

0:no 

1: yes 

0:no 

1: yes 

0:no 

1: yes 

0:no 

l:yes 

Integer 

Integer 

74 



www.manaraa.com

start 

ql 

q2 

q3 

qlc 

q2c 

q3c 

q4 

q5 

q6 

q7-ql8 

PAI 

PAI 

PAI 

PAI 

Computed 

Computed 

Computed 

PAI 

PAI 

PAI 

PAI 

otherprgcourse 

Student's self-reported start time 

for PAI 

Combinatorics question 

Combinatorics question 

Combinatorics question 

Correctness of response to ql 

Correctness of response to q2 

Correctness of response to q3 

Growth rate of functions 

question 

Boolean logic question 

Boolean logic question 

Variable assignment questions 

from Dehnadi's assessment 

instrument 

Time 

Integer 

Integer 

Integer 

0: incorrect 

1: correct 

0: incorrect 

1: correct 

0: incorrect 

1: correct 

0: incorrect 

1: correct 

a,b,c indicating 

respondent's choice 

a, b, c indicating 

respondent's choice 

Integer: 1-18 

indicating response; 

0 indicating novel 

response; 

75 



www.manaraa.com

ql91en 

q20Ien 

q211en 

q221en 

quallen 

Computed 

Computed 

Computed 

Computed 

Computed 

Length of open ended response 

to question 19: "Please describe 

your reasoning concerning your 

responses" 

Length of open ended response 

to question 20: "How does this 

assessment relate to computer 

programming" 

Length of open ended response 

to question 21: "What was the 

most difficult question(s)" 

Length of open ended response 

to question 22: "What other 

comments do you have regarding 

this assessment" 

Sum of q 191en, q201en, q21 len, 

98 indicating 

multiple responses 

all equal; 

99 indicating 

multiple responses 

no pattern 

Integer 

Integer 

Integer 

Integer 

Integer 

76 



www.manaraa.com

ml-mil 

cO 

cOb 

ne 

Computed 

Computed 

Computed 

Computed 

q221en 

The number of responses to q7-

ql8 that reflect the given model 

number, per Dehnadi's scoring 

guide 

The model number, if any, for 

which ml-ml 1 >= 8, indicating 

consistency of mental model 

used, per Dehnadi's scoring 

guide 

Binary variable indicating 

demonstration of a consistent 

mental model 

The number of responses to q7-

ql8 coded as "98", indicating 

selection of multiple responses to 

a question where the variables in 

each of the responses was of 

equal value (e.g., a=5, b=5, c=5) 

Integer 

Integer: 0-11; 

0 indicating no 

consistent model 

used. 

0: No demonstration 

of consistent mental 

model 

1: demonstration of 

consistent mental 

model 

Integer: 0-12 

77 



www.manaraa.com

nn 

nr 

valid 

m2+ml0+ne 

m2.ml0.ne 

mneg 

q23 

durationmins 

Computed 

Computed 

Computed 

Computed 

Computed 

PAI 

Computed 

The number of responses to q7-

ql8 coded as "99", indicating 

selection of multiple responses to 

a question where no consistent 

selection method is evident 

The number of non-responses to 

q7-ql8 

The number of valid responses to 

q7-ql8 

Sum of evidence for m2,ml0, 

and ne 

Sum of m3,m4,m5,m6,m7,m8 

Student's self-reported end time 

for PAI 

q23 - start, the number of 

minutes spent completing the 

PAI 

Integer: 0-12 

Integer: 0-12 

Integer: 0-12 

Integer 

Integer 

Time 

Integer 

a Paper Assessment Instrument (PAI), administered in class during the first week of 
classes, before instruction regarding the assignment of values to variables was given. 

Criterion Variable 

Variable 

finalnumeric 

Source 

Course 

instructor 

Description 

final numeric grade in course 

Coding 

Real number 

78 



www.manaraa.com

Appendix B. Overview of Computer Programming 

Early digital computers distinguished between the program and the data upon 

which the program executed. The program was embodied in the hardware of the 

computer itself with, perhaps, the ability to alter some parameters of the program's 

execution (von Neumann, 1945). Data, however, were fed into the computer by means of 

physical switches, tapes, punch cards, and eventually magnetic storage media. 

Representations of computer programs and the data upon which they operate are 

identical (von Neumann, 1945). Each can be represented by encoding them using a 

binary (two-valued) number system. The standard symbols used in computer science for 

such a system are zero (0) and one (1). Complex information can be expressed using 

sequences of zeros and ones taken together. This design is called stored-procedure 

computing: the hardware is configured primarily to accept input via some physical 

mechanism. The input consists of not only the data to be processed, but also instructions 

constituting the program to be executed. This abstraction allows general purpose 

computers to be built that can then be programmed for specific tasks based only on the 

software input into the computer. 

For such general purpose computers, the question becomes how the program gets 

read into the computer and what instructions guide the computer to read the program? 

This is the bootstrapping problem, suggestive of the notion of pulling oneself up by ones 

bootstraps. Practically, the problem is solved in computers by encoding a small, pre

defined boot loader in hardware: using integrated circuits, for example. The boot loader 

knows just enough about the computer's operation to be able to test the system for critical 

79 



www.manaraa.com

failures (lack of memory, system malfunctions, and so on) and to load the first program, 

usually an operating system such as Windows, DOS, OS X, or any of hundreds of others. 

The operating system then takes control of the system and determines which programs to 

execute, how to load them into the computer's working memory, and how to execute 

them once loaded. 

The computer is following instructions coded at a very low level when executing 

the boot loader and the operating system. Low-level languages are those that require 

coding at or near the level of the actual hardware circuit configurations the computer 

must create in order to execute code. For example, simple mechanical switches being set 

to on and q/f positions might be considered a very low level of programming. Bi t s -

zeros and ones used in the binary number system— stored in the computer's memory 

core are a level above switches, but still very low level. The set of bits understood by a 

given computer architecture is referred to as the machine language of that architecture. 

Each computer architecture has a different machine language. That is, each variant of 

central processing unit assigns a different meaning to sequences of zeros and ones. For 

example, on a given architecture the sequence 0001 may mean to perform addition, while 

on another architecture it may indicate subtraction. 

Programming by entering strings of bits is an error prone task for many reasons, 

including programmer fatigue, the different meanings of identical sequences from one 

architecture to another, the ease with which a bit can be mistakenly entered as the wrong 

value, and the difficulty of locating such mistakes. In order to speed the programming 

process, reduce programming errors, and to make programs more easily readable by 

humans, stored-procedure computers make use of higher-level programming languages to 

80 



www.manaraa.com

provide instructions to the computer. High level languages have the benefit that they are 

easily (to the trained eye) readable by humans, often shorter to code than equivalent bit 

sequences, and are more easily transferred from one architecture to another. This is 

accomplished using compilers. 

Compilers take source code written in a given programming language and convert 

it to the machine language understood by a given architecture. This is a gross 

oversimplification of the process, and there may be many intermediate steps involved, but 

the approximate description accurately captures the salient point: programs can be 

converted from human readable versions into functionally equivalent machine readable 

versions using a compiler. For example, the programming statement 'a = 10' is easily 

understood by anyone familiar with algebra and might be used to represent the 

assignment of the decimal value 10 to the logical variable 'a'. Therefore, 'a = 10' is a 

high level statement that must be converted to machine language in order to be executed 

on a given architecture. (An overview of computer programming is given in Figure 13, 

below.) 

Java-style languages use a model of assignment of values to variables where the 

value of the right-hand side (RHS) of an equality statement is computed and stored in the 

memory location referenced by the variable indicated on the left-hand side (LHS) of the 

statement (for simple value assignment). The RHS keeps its value. Thus, given: 

int a = 5; 

int b = 25; 

a = b; 

81 



www.manaraa.com

the final values of a and b are both 25, under the correct Java-style model. That is, 

the value of the RHS of the final statement (namely, the value of b: 25) will be stored in 

the variable 'a' and the variable on the RHS (b) will keep its value. 

82 



www.manaraa.com

,Viv\i I. __ '-. • 
3 ""- r , , -*« 

I Syntax I-
s-jch -if, , — . - ™ — — . 

•defines 

• vmCPi~i. „-HVZ^&g€ \ 

* „.y 

'-._ 

: i i £ G tO VVfite 

f 

j Sy^wntk-^ j 

' iff ,.~ ' ••• r, 

j &C^*:Te CQClfi - - - i "int:\ "ht ' i l i ! *Ai)r|H" 

Mf i ' i t i i n i of we^-fonrtc-d 

cc-.-tf ted ta 

1 
- •> '~ . By it* icde ] -

-̂  
reenst 0 
istore C 
r n : 0,1 

j .soto •• 1 

•.---I MOO icoi oc:o n i l iciiOQiot 

r-'.ycuf.e'j by 

/ 

stores r ' u ; 

r " ™ ™ ™ ™ " ™ " " " ' " ' %, ^ ' - - - - - " - ™ % f •••••- ~ *. 

j CPU, ALU ' N^rr-Ofy , Magt't^fH", 

7 ' .-- "k ""if" 
ttifrtia j j Puno. ranis | 

r>v 

}«r<« «# — atcrc ' 
* • <, 

Execute 1 

Figure 13: An overview of computer programming 

To make the process more concrete, consider a simplified and fictional set of 

languages presented in Table 5 and Table 6. At the lowest level, they include machine 

language: bits sequenced so as to encode individual instructions, numeric values, and 

83 



www.manaraa.com

memory addresses on which those instructions should be carried out. One step higher, 

mnemonic codes called assembly language are used to encode the same instructions. 

Using assembly language, the programmer can enter mnemonics that can be converted by 

the computer automatically into their machine code equivalents by the assembler. 

Finally, high-level instructions are introduced (Table 6). The high-level language can be 

compiled in order to produce the functionally equivalent assembly code or machine 

language. 

Mnemonic 

(Assembly) 

Language 

LDA5 

STO 10,5 

ST A 10 

LMA 10 

English Description 

Load the computer's 

accumulator with the binary 

representation of the decimal 

value 5. 

Store the binary representation 

of the decimal value 5 in 

memory location 10 

Store the binary representation 

currently in the computer's 

accumulator in memory 

location 10 

Load the binary representation 

Machine Language 

0001 0101 

0010 10100101 

0011 1010 

0100 1010 

84 



www.manaraa.com

ADD 5 

stored in memory location 10 

into the computer's accumulator 

Add the decimal value 5 to the 

computer's accumulator 

0101 0101 

Table 5: Fictional assembly-to-machine language translation 

High Level 

Language 

a = 5; 

a = a + 1; 

Assembly 

LDA5 

ST A 10 

LMA 10 

ADD 1 

STA 10 

Machine Language 

0001 0101 0011 1010 

0100 10100101 0101 0011 1010 

Table 6: Fictional high-level-to-assembly-to-machine language translation 

Programming using a high level language is generally preferable because the 

syntax is more human-friendly and easier to understand. Only in cases where direct 

control of the computer's hardware is necessary is it preferable to program in assembly or 

machine language. 

85 



www.manaraa.com

Appendix C. Modified Dehnadi's Assessment Instrument 

Pre-Assessment for Introductory Programming Students 

Name 

Student Number 
Age 

Gender 

PLEASE PRINT 

M | | | | F 
What AP-Level or equivalent courses have you taken, if any? 

What programming languages have you written in, if any? 
(e.g., Java, C++, a macro script, a calculator script, etc.) 

What other programming courses have you taken, if any? 

What other prior experience do you have that you believe may be relevant to your 
success in this course? 

Please record the date and time you start this assessment: 

Your participation in this study is optional and will not be a factor in the evaluation 
you receive in this course. 

Please sign below to indicate your willingness to participate in the research project 
conducted by William E. J. Doane during Summer/Fall, 2007. 

Participant's signature 

86 



www.manaraa.com

1. Alice, Bob, and Carol each have a 
favorite food: donuts, eggs, and fish, in 
no particular order. 

List all of the ways in which you can 
choose two people and two foods. For 
example: 

Alice, Bob; donuts, eggs. 

2. You're given 2 dice (die). List all of 
the possible combinations of rolls that 
you might get, assuming order doesn't 
matter. For example: 

1,2 and 2,1 

are the same combination. 

3. You're given four colored boxes to be 
stacked on top of each other: red, green, 
blue, and yellow. Assuming you must 
stack all four boxes, list each of the ways 
in which the boxes can be stacked. 

Write your answer in this column Use this column for 
your rough notes 
please 

87 



www.manaraa.com

4. The rate of growth of an expression is 
defined as how quickly the value of the 
expression increases when increasing 
values of n are used to evaluate the 
expression. Arrange these 7 
mathematical expressions in order from 
slowest to fastest rates of growth: 

n2+2n n2 n3 

2n n 5 2n 

5. The dark area of which of these 
diagrams represents "AND" as in: 
"MONDAY and PENNSYLVANIA"? 

6. The dark area of which of these 
diagrams represents "OR" as in: 
"MONDAY or NIGHTTIME"? 

m 
<0D 

88 



www.manaraa.com

7. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 1 0 ; 
i n t b = 2 0 ; 

a = b ; 

8. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 1 0 ; 
i n t b = 2 0 ; 

b = a ; 

The new values of a and b are: 

[ ] a = 10 b = 10 

[] a = 30 b = 20 

[] a = 0 b = 10 

[ ] a = 20 b = 20 

[ ] a = 0 b = 30 

[] a = 10 b = 20 

[] a = 20 b = 10 

[] a = 20 b = 0 

[ ] a = 10 b = 30 

[ ] a = 30 b = 0 

Any other values for a and b: 
a = b = 
a = b = 
a = b = 

The new values of a and b are: 

[] a = 0 b = 30 
[] a = 30 b = 10 
[] a = 0 b = 10 
[] a = 20 b = 0 
[] a = 20 b = 20 
[] a = 20 b = 10 
[] a = 30 b = 0 
[] a = 10 b = 20 
[] a = 10 b = 10 
[] a = 10 b = 30 

Any other values for a and b: 

a = b = 
a = b = 
a = b = 

89 



www.manaraa.com

9. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

int big = 10; 
int small = 2 0; 

b i g s m a l l ; 

The new values of big and small are: 
big = 30 
big = 20 
big = 0 
big = 20 
big = 10 
big = 30 
big = 20 
big = 0 
big = 10 
big = 10 

Any other values for big and small 

s m a l l = 
s m a l l = 
s m a l l = 
sma l l = 
s m a l l = 
s m a l l = 
s m a l l = 
sma l l = 
s m a l l = 
s m a l l = 

0 
0 

30 

10 

10 

20 

20 

10 

20 

30 

b i g = 
b i g = 
b i g = 

s m a l l 
s m a l l 
s m a l l 

The new values of a and b 
[] a = 10 
[] a = 10 
[] a = 30 
[] a = 0 
[] a = 40 
[] a = 30 
[] a = 20 
[] a = 0 
[] a = 30 
[] a = 10 
[] a = 20 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

are: 
= 0 
= 10 
= 50 
= 20 
= 30 
= 0 
= 20 
= 30 
= 30 
= 20 
= 10 

Use this column for 
your rough notes 
please 

10. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 
i n t b = 

a = b ; 
b = a; 

= 10; 
= 20; 

Any other values for a and b: 
a = b = 
a = b = 
a = b = 

1 1. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

The new values of a and b are: 

i n t a = 
i n t b = 

b = a; 
a = b ; 

= 10; 
= 20; 

[] a = 30 
[] a = 10 
[] a = 20 
[] a = 10 
[] a = 0 
[] a = 30 
[] a = 40 
[] a = 0 
[] a = 20 
[] a = 30 
[] a = 10 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

= 50 
= 10 
= 20 
= 0 
= 20 
= 0 
= 30 
= 30 
= 10 
= 30 
= 20 

Any other values for a and b: 
a = b = 
a = b = 
a = b = 

90 



www.manaraa.com

12. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

int 
int 
int 

a = 
b = 

a = 
b = 
c = 

b; 
c; 

10; 
2 0; 
30; 

The new values of a and b and c are: 

[ ] a = 
[ ] a = 
[] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 

30 
60 
10 
0 
10 
60 
30 
20 
10 
20 
0 

20 
10 
30 
0 

30 
0 

20 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

50 
0 
30 
10 
10 
20 
50 
30 
20 
20 
10 
30 
10 
30 
30 
30 
0 
30 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

30 
0 
40 
0 
10 
30 
0 
0 
30 
20 
20 
30 
20 
50 
50 
30 
60 
20 

Any other values for a and b and c : 

a = 
a = 
a = 

b = 
b = 
b = 

c 
c 
c 

Use this column for 
your rough notes 
please 

13. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 
i n t b = 3 
i n t c = 7 

The new values of a and b and c are: 

a = c ; 
b = a; 
c = b ; 

[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
t ] a = 
[ ] a = 
[ ] a = 
[ ] a = 
[ ] a = 

3 
3 
12 
8 
7 
5 
5 
7 
3 
12 
10 
0 
0 
3 
3 

b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 
b 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

5 
3 
14 
15 
7 
3 
5 
5 
7 
8 
8 
0 
0 
12 
5 

c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

5 
3 
22 
12 
7 
7 
5 
3 
5 
10 
12 
7 
15 
0 
7 

Any other values for a and b and c : 

91 



www.manaraa.com

14. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 ; 
i n t b = 3 ; 
i n t c = 7 ; 

c = b ; 
b = a ; 
a = c ; 

15. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 ; 
i n t b = 3 ; 
i n t c = 7 ; 

c = b ; 
a = c ; 
b = a ; 

The new values of a and b and c are: 

[ ] a = 3 b = 5 c = 
[] a = 15 b = 10 c = 
[] a = 12 b = 8 c = 
[] a = 7 b = 7 c = 
[ ] a = 3 b = 5 c = 
[] a = 0 b = 0 c = 
[ ] a = 5 b = 3 c = 
[ ] a = 3 b = 3 c = 
[ ] a = 7 b = 5 c = 
[ ] a = 3 b = 5 c = 
[ ] a = 3 b = 7 c = 
[] a = 8 b = 10 c = 
[ ] a = 5 b = 5 c = 
[] a = 15 b = 8 c = 
[] a = 10 b = 5 c = 
[] a = 0 b = 0 c = 

Any other values for a and b and c : 

a = b = c = 
a = b = c = 
a = b = c = 

The new values of a and b and c are: 

[] a = 15 b = 18 c = 
[ ] a = 7 b = 5 c = 
[] a = 7 b = 0 c = 
[] a = 0 b = 3 c = 
[] a = 10 b = 0 c = 
[ ] a = 5 b = 3 c = 
[ ] a = 3 b = 3 c = 
[] a = 12 b = 8 c = 
[ ] a = 7 b = 7 c = 
[] a = 15 b = 10 c = 
[] a = 7 b = 7 c = 
[] a = 8 b = 10 c = 
[] a = 0 b = 15 c = 
[ ] a = 7 b = 3 c = 
[ ] a = 5 b = 5 c = 
[ ] a = 3 b = 7 c = 

Any other values for a and b and c : 

a = b = c 
a = b = c 
a = b = c 

7 
22 
10 

7 
3 
7 
7 
3 
3 
0 
5 

12 
5 

10 
0 

15 

10 
3 
r 

0 
5 
7 
3 

10 
7 

12 
5 

12 
0 
5 
5 
5 

Use this column for 
your rough notes 
please 

92 



www.manaraa.com

16. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 ; 
i n t b = 3 ; 
i n t c = 7 ; 

b = a ; 
c = b ; 
a = c ; 

17. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 ; 
i n t b = 3 ; 
i n t c = 7 ; 

b = a ; 
a = c ; 
c = b ; 

The new values of a and b and c are: 

[] a = 0 b = 7 c = 3 
[] a = 12 b = 8 c = 10 
[] a = 15 b = 0 c = 0 
[] a = 0 b = 7 c = 8 
[ ] a = 3 b = 7 c = 3 
[ ] a = 5 b = 3 c = 7 
[ ] a = 3 b = 3 c = 3 
[ ] a = 7 b = 5 c = 3 
[] a = 20 b = 8 c = 15 
[ ] a = 3 b = 7 c = 5 
[] a = 5 b = 0 c = 0 
[] a = 8 b = 10 c = 15 
[ ] a = 5 b = 5 c = 5 
[] a = 8 b = 10 c = 12 
[ ] a = 5 b = 7 c = 3 
[] a = 7 b = 7 c = 7 

Any other values for a and b and c : 

a = b = c = 
a = b = c = 
a = b = c = 

The new values of a and b and c are: 

[] a = 8 b = 18 c = 15 
[] a = 7 b = 0 c = 8 
[ ] a = 5 b = 5 c = 5 
[] a = 12 b = 8 c = 15 
[] a = 7 b = 0 c = 5 
[ ] a = 3 b = 7 c = 5 
[ ] a = 7 b = 5 c = 3 
[] a = 0 b = 15 c = 0 
[] a = 0 b = 3 c = 0 
[ ] a = 3 b = 3 c = 3 
[] a = 7 b = 7 c = 7 
[] a = 12 b = 8 c = 10 
[] a = 8 b = 10 c = 12 
[ ] a = 7 b = 5 c = 5 
[ ] a = 5 b = 3 c = 7 
[ ] a = 7 b = 3 c = 5 

Any other values for a and b and c : 

a = b = c = 
a = b = c = 
a = b = c = 

Use this column for 
your rough notes 
please 

93 



www.manaraa.com

18. Read the following statements and 
tick the box next to the correct answer in 
the next column. 

i n t a = 5 ; 
i n t b = 3 ; 
i n t c = 7 ; 

a = c ; 
c = b ; 
b = a ; 

The new values of a and b and c are: 

[] a = 0 b = 12 c = 3 
[ ] a = 5 b = 5 c = 5 
[] a = 0 b = 7 c = 3 
[] a = 8 b = 10 c = 12 
[] a = 15 b = 0 c = 0 
[ ] a = 3 b = 7 c = 5 
[] a = 12 b = 15 c = 10 
[ ] a = 5 b = 7 c = 3 
[ ] a = 3 b = 3 c = 3 
[] a = 7 b = 7 c = 7 
[] a = 12 b = 8 c = 10 
[] a = 5 b = 0 c = 0 
[ ] a = 5 b = 3 c = 7 
[] a = 7 b = 7 c = 3 
[] a = 20 b = 15 c = 12 
[ ] a = 7 b = 5 c = 3 

Any other values for a and b and c : 

a = b = c = 
a = b = c = 
a = b = c = 

Use this column for 
your rough notes 
please 

19. Please describe your reasoning concerning your responses. How did you arrive at the answers you have 
given? 

20. How does this assessment relate to computer programming? 

94 



www.manaraa.com

21. What was the most difficult question(s)? Why? 

22. What other comments do you have regarding this assessment? 

23. Please record the time you finished this assessment: 

95 



www.manaraa.com

Appendix D. Dehnadi's Scoring Form 

! 

I 

ii 
1 

J 

! 

4 

X 

1 

J' 

ii 
U 

I 
n 
! * 

*I 

1 

• f i l l ' 

isii-

i 

i 
IS 
1 
1 

! 
< 

| 

in* 
!m 
mi 
tin 
1 1 1 7 

1 1 1 ? 

* »• — . 

111! 

I e c a a 

96 



www.manaraa.com

Appendix E. Scoring Guidelines 

In the answer sheet for Q1-Q3 (single assignment questions) there are ten single-

tick boxes (Ml to Ml 1) and one double-tick box (M10). If the subject gives one tick, we 

use a single-tick box. If they give two ticks in the positions specified, we use the double-

tick box. We can't interpret anything else. 

In multiple assignments (Q4 onwards) there is more complexity. First, some of 

the models are decorated with S or Ss. Instead of just ticking the corresponding model 

column on the mark sheet, please put the S or Ss next to the tick. 

Second, some of the single-tick boxes give alternative models. In this case tick all 

of the alternative models on the mark sheet. Then, when you've marked all the questions, 

try to maximise the coherence of the subject's answers by inking in on of the pencil ticks 

on each row, so as to maximise the numbers in the summary row (labelled CO on the 

mark sheet). 

Subjective marking is needed to decide what to do with not-entirely- blank 

scripts. At present we use the following rule: 

Rule 1: A consistent response to Ql- Q3 (all the ticks in a single column or in two 

adjacent columns) can be considered non-blank, but if all we get is three ticks all 

over the place and nothing else, it's blank. If we could get consistent responses to all 

the double-assignments or the triple-assignments, then that was non-blank too. 

97 



www.manaraa.com

Using joined columns; we can investigate four different levels of consistency in the rows 

that represent by labels CO, CI, C2 and C3. Level CO contents of the 11 single models 

and demonstrates the highest rate of consistency while sliding toward level C3 leads to 

lower rate and poorer sign of consistency. 

Level CI contents of 4 columns that each is created by joining two adjacent models, 

logically carried common concepts. Ml and M2, M3 and M4, M5 and M6, M7 and M8. 

Each of these new columns logically approved Assignment, assigning value to the left or 

to the right. Level C2 contents 2 columns that each is created by joining 4 adjacent 

models, logically carried common concepts. Ml and M2 and M3 and M4, M5 and M6 

and M7 and M8. Each of these new columns logically approved Assignment, assigning 

value to the left and to the right. Level C3 contents of a single column that created by 

joining 8 other models, logically carried common concepts. Ml and M2 and M3 and M4 

and M5 and M6 and M7 and M8. The new column logically approved assignment. 

Rule 2: Any C level can be considered as subject's level of consistency if: 

Mode value in C level >= abs (no. of answered questions * 80%) and 

no. of answered questions >= abs (no. of questions * 80%) According to the above rule 

the subject in the sample is consistent in CI level. This method creates around 20% 

flexibility in C level of subject's that answered 80% of the questionnaire. 

98 



www.manaraa.com

Appendix F. Mastermind® Game 

Figure 14: Mastermind Game Board (Source: Wikipedia.org, 2007a) 

Mastermind® begins when the codemaker selects a set of colored marbles (with 

duplication of color allowed) and arranges them in some order (Figure 14, bottom). The 

codebreaker attempts to guess the colors and order of the marbles. After each guess, the 

codemaker indicates the number of marbles that match both color and position by placing 

a red pin to the right of the guess. Guessed marbles that match in color, but not position 

are indicated using a white pin. 

99 

http://Wikipedia.org


www.manaraa.com

Appendix G. Sudoku Game 

5 

6 

8 
A 

*7 

3 

9 

6 

8 

1 

8 

4 

7 

9 

6 

mm 

1 

8 

5 

3 

9 

2 

6 

8 

7 

3 

1 

6 

mm 

5 
9 

Figure 15. Sample SuDoku Game Board (Source: Wikipedia.org, 2007b) 

The SuDoku game board presents the player with a set of completed and open 

squares. Each cell of the board contains a number from 1-9 or is blank, initially. The 

value to be placed in blank cells is fully constrained by the given values. Players 

complete the puzzle by deducing which numbers should be placed in which cells. 

SuDoku has only three rules: 

• each row must contain each of the numbers from 1 to 9 exactly once, 

• each column must contain each of the numbers from 1 to 9 exactly once, and 

• each block (3x3 sub-grid, denoted in Figure 15 by regions bounded by heavy 

lines) must contain each of the numbers from 1 to 9 exactly once. 

100 

http://Wikipedia.org


www.manaraa.com

These rules impose constraints on the final solution to the puzzle. For example, in 

the lower-right block, the lower-left cell must contain a 1, since both the row above and 

the right-hand column already contain a 1. 

101 



www.manaraa.com

Appendix H. Open-Ended Questions 

The following questions will be included at the end of each web-based activity in 

order to have participants reflect on their reasoning and the activities. 

• Please describe your reasoning concerning your responses. How did you arrive at 

the answers you have given? 

• How does this assessment relate to computer programming? 

• What was the most difficult question(s)? Why? 

• What other comments do you have regarding this assessment? 

102 



www.manaraa.com

Appendix I. Informed Consent Form 

Title: Predicting Success In Introductory Computer Programming Courses 
Researcher: William E. J. Doane 

This study is an attempt to identify students likely to succeed in introductory 
computer science courses. 

You are being asked to participate by completing a short assessment at the 
beginning of your course, completing an online assignment, and by allowing your final 
grade in the course to be released to the researcher at the completion of the course. No 
other effort is require on your part. The tasks are expected to take approximately 60 
minutes to complete. 

We do not anticipate any risk in your participation other than you may become 
uncomfortable answering some of the questions. 

Although you may not receive direct benefit from your participation, others may 
ultimately benefit from the knowledge obtained from this research. 

Your responses will not be released to your instructor. Your answers and your 
final grades will be kept confidential and will only be able to be traced to you by the 
researcher. Identifiable grades will not appear in any published work. All information 
obtained in this study is strictly confidential unless disclosure is required by law. In 
addition, the Institutional Review Board and University or government officials 
responsible for monitoring this study may inspect these records. 

RESEARCHER FACULTY SUPERVISOR 
William E. J. Doane Joette Stefl-Mabry 
Ph.D. Student Professor, Information Studies, University at Albany 
(518)810-5427 (518)442-5120 
One copy of this document will be kept together with the research records of this 

study. Also, you will be given a copy to keep. 
If you have any questions concerning your rights as a research participant that 

have not been answered by the investigator or if you wish to report any concerns about 
the study, you may contact the University at Albany Office of Research Compliance at 
(518) 437-4569 or orc@uamail.albany.edu. 

Your participation in this project is voluntary. Even after you agree to 
participate in the research or sign this document, you may decide to leave the study at any 
time without penalty or loss of benefits to which you may otherwise have been entitled. If 
you do not wish to participate, hand in a blank packet. 

I have read, or been informed of, the information about this study. I hereby 
consent to participate in the study. 

Please print your name 

Signature 
103 

date 

mailto:orc@uamail.albany.edu


www.manaraa.com

Appendix J. CTY Informed Assent Form 

Title: Predicting Success In Introductory Computer Programming Courses 
Researcher: William E. J. Doane 

This study is an attempt to identify students likely to succeed in introductory 
computer science courses. 

You are being asked to participate by completing a short assessment at the 
beginning of your course, completing an online assignment, and by allowing your final 
marks in the course to be released to the researcher at the completion of the course. No 
other effort is require on your part. The tasks are expected to take approximately 60 
minutes to complete. 

We do not anticipate any risk in your participation other than you may become 
uncomfortable answering some of the questions. 

Although you may not receive direct benefit from your participation, others may 
ultimately benefit from the knowledge obtained from this research. 

Your answers and your final marks will be kept confidential and will only be able 
to be traced to you by the researcher. Identifiable marks will not appear in any published 
work. All information obtained in this study is strictly confidential unless disclosure is 
required by law. In addition, the Institutional Review Board and University or 
government officials responsible for monitoring this study may inspect these records. 

RESEARCHER FACULTY SUPERVISOR 
William E. J. Doane Joette Stefl-Mabry 
Ph.D. Student Professor, Information Studies, University at Albany 
(518)810-5427 (518) 442-5120 
One copy of this document will be kept together with the research records of this 

study. Also, you will be given a copy to keep. 
If you have any questions concerning your rights as a research participant that 

have not been answered by the investigator or if you wish to report any concerns about 
the study, you may contact the University at Albany Office of Research Compliance at 
(518) 437-4569 or orc@uamail.albany.edu. 

Your participation in this project is voluntary. Even after you agree to 
participate in the research or sign this document, you may decide to leave the study at any 
time without penalty or loss of benefits to which you may otherwise have been entitled. If 
you do not wish to participate, hand in a blank packet. 

I have read, or been informed of, the information about this study. I hereby agree 
to participate in the study. 

Please print your name 

Signature date 

104 

mailto:orc@uamail.albany.edu


www.manaraa.com

Appendix K. CTY Parental Permission Form 

Title: Predicting Success In Introductory Computer Programming Courses 
Researcher: William E. J. Doane 

This study is an attempt to identify students likely to succeed in introductory 
computer science courses. 

Your child is being asked to participate by completing a short assessment at the 
beginning of his or her course, completing an online assignment, and by allowing their 
final marks in the course to be released to the researcher at the completion of the course. 
No other effort is required on their part. The tasks are expected to take approximately 60 
minutes to complete. 

We do not anticipate any risk in your child's participation other than that he or 
she may become uncomfortable answering some of the questions. 

Although your child may not receive direct benefit from his or her participation, 
others may ultimately benefit from the knowledge obtained from this research. 

Your child's answers and final marks will be kept confidential and will only be 
able to be traced to him or her by the researcher. Identifiable marks will not appear in any 
published work. All information obtained in this study is strictly confidential unless 
disclosure is required by law. In addition, the Institutional Review Board and University 
or government officials responsible for monitoring this study may inspect these records. 

RESEARCHER FACULTY SUPERVISOR 
William E. J. Doane Joette Stefl-Mabry 
Ph.D. Student Professor, Information Studies, University at Albany 
(518)810-5427 (518)442-5120 
One copy of this document will be kept together with the research records of this 

study. Also, you will be given a copy to keep. 
If you have any questions concerning your rights or your child's rights as a 

research participant that have not been answered by the investigator or if you wish to 
report any concerns about the study, you may contact the University at Albany Office of 
Research Compliance at (518) 437-4569 or orc@uamail.albany.edu. 

Your child's participation in this project is voluntary. Even after you agree to 
allow him or her to participate in the research or sign this document, you or your child 
may decide to leave the study at any time without penalty or loss of benefits to which you 
may otherwise have been entitled. 

I have read, or been informed of, the information about this study. I hereby agree 
to allow my child to participate in the study. 

Please print your child's name Please print your name 

Your Signature date 

105 

mailto:orc@uamail.albany.edu


www.manaraa.com

Appendix L. Sample Statistics 

Table 7: 

Sample Size by Institution and Gender 

CTY CC University Subtotal by gender 
Female 
Male 
Subtotal by institution 

Table 8: 

Female 
Male 
Subtotal 

5 7 12 24 
25 28 59 112 
30 35 71 n = 136 

Prior Programming Experience by Programming Languag 

Calculator" 
no 
23 
95 

118 

yes 
1 

17 
18 

VBb C C++ Java 
no yes no yes no yes no yes 
20 4 24 0 22 2 20 4 
90 22 104 8 80 32 86 26 

110 26 128 8 102 34 106 30 

Female 
Male 
Subtotal 

JavaScript 
no yes 
24 0 

100 12 
124 12 

PHP 
no yes 
24 0 

105 7 
129 7 

Pascal 
no yes 
24 0 

111 1 
135 1 

a Calculator refers to prior programming experience using calculator scripting languages 
b VB refers to prior programming experience using Visual Basic 

106 



www.manaraa.com

Table 9: Descriptive Statistics 

Min. Median Mean S.D. Max. <NA> 
finalnumeric 
age 
ap 
otherprgcourse 
totalprgcourses 
ql 
q2 
q3 
ql91en 
q201en 
q211en 
q221en 
quallen 
durationmins 
ne 
nn 
nr 
valid 
m2+ml0+ne 
mneg 

18.26 
12.00 
0.00 
0.00 
0.00 
2.00 
1.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
9.00 
0.00 
0.00 
0.00 
0.00 
0.00 
2.00 

80.19 
18.00 
0.00 
0.00 
1.00 
9.00 

21.00 
24.00 
57.00 
41.50 
50.50 
0.00 

180.00 
23.00 

0.00 
0.00 
0.00 

10.50 
7.00 

20.00 

75.12 
18.42 
0.72 
0.13 
1.13 

12.95 
24.81 
20.85 
69.10 
53.85 
54.73 
18.15 

195.80 
22.87 

0.89 
1.02 
3.09 
7.00 
5.98 

18.46 

20.23 
4.37 
1.38 
0.58 
1.47 

30.87 
21.76 
21.91 
55.96 
56.77 
46.35 
39.80 

152.80 
6.59 
2.81 
2.69 
4.60 
5.40 
5.40 
2.85 

100.00 
47.00 

7.00 
4.00 
9.00 

360.00 
256.00 
256.00 
336.00 
355.00 
232.00 
314.00 

1057.00 
50.00 
12.00 
12.00 
12.00 
12.00 
12.00 
20.00 

6.00 

3.00 
5.00 
5.00 

14.00 

Table 10: Responses to Paper Assessment Instrument Question 1 

2 3 4 5 6 8 9 
3 4 1 1 8 3 94 

12 
1 

16 
1 

18 
8 

24 
3 

27 
2 

35 
1 

36 
2 

360 
1 

<NA> 
3 

Table 11: Responses to Paper Assessment Instrument Question 2 

1 3 15 16 17 18 19 20 21 24 30 35 36 38 72 256 <NA> 
1 5 1 12 81 1 1 17 

Table 12: Responses to Paper Assessment Instrument Question 3 

3 4 5 6 7 8 9 
1 5 2 7 4 3 4 

11 
2 

12 
2 

14 
1 

15 
1 

16 
9 

17 
1 

18 
1 

20 
1 

21 
1 

22 
1 

24 25 
82 1 

26 
1 

256 
1 

<NA> 
5 

Table 13: Correctness of Responses to Paper Assessment Instrument Question 4 by 
Gender 

Female 
Male 
Subtotal by correctness 

Incorrect 
18 
79 
97 

Correct 
5 

29 
34 

<NA> 
1 
4 
5 

107 



www.manaraa.com

Table 14 Responses to Questions 5 by Response and Gender 

a b c <NA> 
Female 
Male 
Subtotal by response 

Table 15: Responses 

0 0 24 0 
24 5 82 1 
24 5 106 1 

to Questions 6 by Res] 

a b c <NA> 
Female 
Male 
Subtotal by response 

16 6 2 0 
41 36 32 3 
57 42 34 3 

Table 16: Item Responses for PAI Questions 7-18 

0a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1898" 99 b nnc 

q7 
q8 
q9 

qlO 
q l l 
ql2 
ql3 
ql4 
ql5 
ql6 
ql7 
ql8 

0 10 O i l 1 3| 55 

0 0 0 0 2 14 10 

0 1 0 0 

0 

6 

0 

1 1 0 

8 

2 6 1 
0 

0 

39 

56 
37 

2 

1 

1 0 

0 0 

1 1 

1 1 

0 

2 

0 

18 

1 

0 

4 

5 

1 

6 9 

1 1 

3 0 0 1 

1 4 0 0 
37 

32 0 

0 9 

2 11 

0 1 

0 18 

1 11 

3 21 2 

9 2 21 

1 5 

541 01 

01 

8 171 
0 81 

36 

3 

2 

1 

1 

0 0 

1 4_ 

0 0 

0 1 2 10 4 18 0 0 

2 0 0 1 20 0 0 5 

0 1 0 0 0 2 3 2 

21 
1 

1 

1 

0 

2 

1 

51 0 1 0 

0 0 0 | 

2 1 0 0 

0 0 1 0 

0 

3 0 0 

(i 

4 

35 
1 

0 

1 
34 

34 0 201 

12 18 

12 11 

11 15 

15 16 

14 16 

11 12 

10 11 

8 11 

7 8 

7 8 

7 6 

7 7 
Note. Boxed entries indicate mental model 2, the "correct" model for Java, C++, and 
JavaScript. 
a "0" indicates a single response was given other than those presented to the subject. 
b "98" indicates multiple responses were given where the variables in each selected item 
was equal (e.g., a=5, b=5, c=5 and a=10, b=10, c=10). 
c "99" indicates multiple responses where given where no consistent selection method 
was evident. 

108 



www.manaraa.com

Table 17: CO consistency of Mental Models Used by Mental Model and Gender 

Mental Model 
2 4 9 10 Subtotal by gender 

Female 4 0 1 2 7 
Male 46 1 4 7 58 
Subtotal by model 50 1 5 9 Total consistent = 65 

109 



www.manaraa.com

Appendix M. Typical R Session 

R is a free, open-source statistics package that allows the user to interact with data 

using both a command-line and a visual interface (R Development Core Team, 2008). 

Typically, interactive R sessions consist of setting environment options, establishing a 

clear workspace, loading support libraries for the types of data analyses and manipulation 

being performed, loading a dataset, and using the support library to perform the analyses. 

The R interactive command prompt is indicated by the greater-than symbol (>). 

> options(digits=3, scipen=1000) 
> rm(list=ls()) # remove all objects from current workspace 
> library(gdata) 
> library(Hmisc) 
> library(rpart) 
> doane.data = read.xls("doane0402.xls") 
> dim(doane.data) # display dimensions of the data 
> doane.data[1:4,] # display first 4 rows of data 
> attach(doane.data) 
> panel.hist <- function(x, ...) 

{ 
usr <- par("usr"); on.exit(par(usr)) 
par(usr = c(usr[l:2], 0, 1.5) ) 
h <- hist(x, plot = FALSE) 
breaks <- h$breaks; nB <- length(breaks) 
y <- h$counts; y <- y/max(y) 
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...) 

} 
> doane.lml = lm(finalnumeric - cO + institution) 
> summary(doane.1ml) 
> doane.rptl = rpart(finalnumeric - cO + institution) 
> cor(predict(doane.rptl), finalnumeric) 
> par(xpd=TRUE); plot(doane.rptl); text(doane.rpt1, use=T,cex=2) 
> doane.rptl.jitter <- jitter(predict(doane.rptl), 1.2) 
> plot(doane.rptl.jitter, finalnumeric) 
> identify(doane.rptl.jitter, finalnumeric) 
> pairs(cbind(finalnumeric, cO, institution, doane.rptl.jitter), 
diag.panel = panel.hist, panel=panel.smooth, pch=l+16*c0b, cex=1.75) 
> savehistory("diss.history") # save the R command history 
> save.image() # save the R workspace 
> q() 

110 



www.manaraa.com

Appendix N. Enhanced Scatterplot of Selected Variables 

Figure 16: Enhanced Scatterplot of Selected Variables 

111 



www.manaraa.com

Appendix O. Enhanced Scatterplot of Linear Model and 

Principal Regression Tree Predicted Values 

Figure 17: Enhanced Scatterplot of Linear Model and Principal Regression Tree 

Predicted Values 

112 


